About three equational classes of languages built up by shuffle operations

  • Matthias Höpner
  • Manfred Opp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


Homomorphic Image Minimal Solution Equational Classis Recursive Program Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bekić,H. Definable operations in general algebras and the theory of automata and flowcharts. IBM, Vienna, (1969).Google Scholar
  2. 2.
    Hack,M. Petri Net Languages, MIT Comp. Struct. Group Memo 124, (1975).Google Scholar
  3. 3.
    Höpner,M. Über den Zusammenhang von Szilardsprachen und Matrixgrammatiken, Inst.für Informatik, Univ.Hamburg, Tech. Rep. Nr 12, (1974).Google Scholar
  4. 4.
    Höpner,M. Families of Languages Defined by Shuffle Operations, submitted for publication, (1976).Google Scholar
  5. 5.
    Höpner,M. Opp,M. Renaming and Erasing in Szilard Languages, Univ. Hamburg, Tech.Rep. to be published, (1976)Google Scholar
  6. 6.
    Mazurkiewicz,A. Parallel Recursive Program Schemes, 4th Symp. MFCS Marianske Lazne, (1975).Google Scholar
  7. 7.
    Opp,M. Eine Beschreibung kontextfreier Sprachen durch endliche Mengensysteme, 2nd GI Conf. on Aut.Th. and Formal Lang.,Kaiserslautern, (1975).Google Scholar
  8. 8.
    Opp,M. Charakterisierungen erkennbarer Termmengen in absolut freien universellen Algebren, Diss.Hamburg, (1975).Google Scholar
  9. 9.
    Wand,M. Mathematical foundations of formal language theory, MIT, MAC TR — 108, (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Matthias Höpner
    • 1
  • Manfred Opp
    • 1
  1. 1.Institut für InformatikUniversität HamburgHamburg 13

Personalised recommendations