Advertisement

An algebraic approach to data types, program verification, and program synthesis

  • Friedrich W. von Henke
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /BiL/.
    G. Birkhoff and J.D. Lipson: Heterogeneous algebras. Journ. Comb. Theory 8 (1970), 115–133.Google Scholar
  2. /BoM/.
    R.S. Boyer and J.S. Moore: Proving theorems about LISP functions. Journ. of the ACM 22 (1975), 129–144.CrossRefGoogle Scholar
  3. /BuD/.
    R.M. Burstall and J. Darlington: Some transformations for developing recursive programs. Proc. Int. Conf. on Reliable Software, Los Angeles, 1975, 465–472.Google Scholar
  4. /He1/.
    F.W. von Henke: On the representation of data structures in LCF. Memo AIM-267, Stanford University, 1975.Google Scholar
  5. /He2/.
    F.W. von Henke: Recursive data types and program structures. 1976 (to appear).Google Scholar
  6. /Ma/.
    F.K. Mahn: Primitiv-rekursive Funktionen auf Termmengen. Arch. math. Logik 12 (1969), 54–65.Google Scholar
  7. /MaW/.
    Z. Manna and R. Waldinger: Knowledge and reasoning in program synthesis. Techn. Note 98, Stanford Research Institute, 1974.Google Scholar
  8. /McC/.
    J. McCarthy: Towards a mathematical science of computation. Proc. IFIP Congr. 1962, 21–28.Google Scholar
  9. /Mi1/.
    R. Milner: Logic for computable functions — description of an implementation. Memo AIM-169, Stanford University, 1972.Google Scholar
  10. /Mi2/.
    R. Milner: Implementation and application of Scott's logic for computable functions. Proc. ACM Conf. on Proving Assertions about Programs, Las Cruces, New Mexico, 1972.Google Scholar
  11. /Ne/.
    M. Newey: Formal semantics of LISP with applications to program correctness, (PhD thesis). Memo AIM-257, Stanford University, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Friedrich W. von Henke
    • 1
  1. 1.Gesellschaft für Mathematik und Datenverarbeitung BonnSt. Augustin 1W-Germany

Personalised recommendations