The direct product of automata and quasi-automata

  • W. Dörfler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


Equivalence Relation Direct Product Automorphism Group Great Common Divisor Subdirect Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G. and J.D. Lipson. Heterogeneous algebras. J. Combinatorial Theory 8 (1970), 115–133Google Scholar
  2. [2]
    Dörfler, W. Halbgruppen und Automaten. Rend. Sem. Mat. Univ. Padova 50 (1973), 1–18Google Scholar
  3. [3]
    Eilenberg, S. Automata, Languages and Machines. Academic Press, 1974Google Scholar
  4. [4]
    Fleck, A.C. Isomorphism groups of automata. J. Assoc. Comp. Machinery 9 (1962), 469–476Google Scholar
  5. [5]
    Fleck, A.C. On the automorphism group of an automaton. J. Assoc. Comp. Machinery 12 (1965), 566–569Google Scholar
  6. [6]
    Gecseg, F. and I. Peak. Algebraic theory of automata. Akadémiai Kiado, Budapest 1972Google Scholar
  7. [7]
    Trauth, Ch. A. Group-Type Automata. J. Assoc. Comp. Machinery 13 (1966), 160–175Google Scholar
  8. [8]
    Weeg, G.P. The automorphism group of the direct product of strongly related automata. J. Assoc. Comp. Machinery 12 (1965), 187–195Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • W. Dörfler
    • 1
  1. 1.KlagenfurtAustria

Personalised recommendations