The metric properties on the semigroups and the languages

  • Alexandru DincĂ
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


In this paper a way to define a distance on a semigroup (with respect to a nonempty subset of S) one gives. We establish any properties of build metric space. When S is the free semigroup generated by a finite set Σ we obtain the distances on the languages. Two new language classes one defines: local finite and local bounded and the conections between the two language classes and languages from the Chomsky hierarchy are establish.


Equivalence Class Nonempty Subset Cardinal Number Language Class Bounded Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.DincĂ, Sur queques problêmes d'analyse contextuelle métrique. Rev.roum.math., Toml3, nr.1, pp. 65–70, Bucarest.Google Scholar
  2. 2.
    A. DincĂ, Distanţe contextuale în lingvistica algebricĂ. St.cerc. mat. Tom25, nr.2, p.223–265, 1973,Bucureşti.Google Scholar
  3. 3.
    A. DincĂ, Distanţe şi diametre într-un semigrup (cu aplicaţii la teoria limbajelor). St.cerc.mat. Tom25, Nr.3, p.359–378, Bucureşti, 1973.Google Scholar
  4. 4.
    M. Gross, A. Lentin, Notions sur les grammaire formelles, Gauthier-Villars, Paris, 1967.Google Scholar
  5. 5.
    S. Ginsburg, The mathematical theory of context-free languages. McGraw-Hill, New York, 1966.Google Scholar
  6. 6.
    M.Ito, Quelques remarques sur l'espace contextuel. Mathematical Linguistics, nr.57, 1971, pp.18–28.Google Scholar
  7. 7.
    S. Marcus, Analyse contextuelle. Zeitschrift fur Phonetik, Sprachwissesschaft und Kommunikationsforshung,3,1965,pp.301–313, Berlin.Google Scholar
  8. 8.
    S. Marcus, Algebraic Linguistics, Analytical Models. New York, London Academic Press, 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Alexandru DincĂ
    • 1
  1. 1.University of CraiovaRomania

Personalised recommendations