Cannonizing reducibility method in the theory of program schemata

  • A. O. Buda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ershov,A.P., Theory of Program Schemata, Proc. Congress IFIP 71, invited papers(1972) Ljubljana.Google Scholar
  2. 2.
    Ershov,A.P., The modern state of the theory of program schemata,Problems of Cybernetics,27 (1973), Nauka,Moscow(in Russian)Google Scholar
  3. 3.
    Luckham, D.C., Park, D.M.R., Paterson, M.S., On Formalized Computer Programs,JCSS,4,3(1970).Google Scholar
  4. 4.
    Letichevsky,A.A., The functional equivalence of discrete processors I, Cybernetics, 2(1969), Kiev (in Russian).Google Scholar
  5. 5.
    Ershov, A.P., Denotion of the based programming constructions, Problems of Cybernetics, 8 (1962), Nauka, Moscow (in Russian).Google Scholar
  6. 6.
    Itkin,V.I., Logic-termal equivalence of program schemata, Cybernetics, 1(1972),Kiev (in Russian).Google Scholar
  7. 7.
    Bird, M., The Equivalence Problem for Deterministic Two-Tapes Automata, JCSS,7, 2 (1973).Google Scholar
  8. 8.
    Buda, A.O., Itkin, V.I., Termal equivalence of program schemata, Theoretical and System Programming,4 (1974), Computer centre SOAN SSSR, Novosibirsk (in Russian).Google Scholar
  9. 9.
    Buda, A.O., The equivalence relations on the classes of program schemata, Kandidatskaya dissertatsiya(1975), Computer centre SOAN SSSR, Novosibirsk(in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • A. O. Buda
    • 1
  1. 1.Institute of Mathematics and MechanicsBulgarian Academy of SciencesSofia 13

Personalised recommendations