Decision problems for multi-tape automata

  • Peter H. Starke
Invited Lecturers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)

Abstract

The paper reviews the solvability resp. unsolvability of decision problems for the relations represented by deterministic and nondeterministic multi-tape automata with or without endmarker on the one hand and the solvability resp. unsolvability of decision problems for the languages defined by the same types of automata on the other hand. The first section presents results on the inclusions between the different classes of relations and languages under consideration. The second section deals with decision problems for relations. The main new result here is that all the considered problems are decidable for autonomous relations. The last section contains the results on the solvability resp. unsolvability of decision problems for languages. These results are sharpenings of known ones, some of them are entirely new.

Keywords

Decision Problem Regular Expression Regular Language Input Alphabet Proper Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berstel, J.: Memento sur les transductions rationelles. Inst. de Programmation, Univ. de Paris VI, NoIP 74-23 (1974).Google Scholar
  2. [2]
    Fischer, P.C.; Rosenberg, A.L.: Multitape one-way nonwriting automata. J.Comp.Syst.Sci. 2 (1968), 88–101.Google Scholar
  3. [3]
    Ginsburg, S.; Spanier, E.H.: Bounded ALGOL-like languages. Trans.Amer.Math.Soc. 113 (1964), 333–368.Google Scholar
  4. [4]
    Makarevski, A.; Stotskaya, E.V.: Representability in deterministic multitape automata. Kibernetika (Kiev) 1969, No. 4 (in russian).Google Scholar
  5. [5]
    Mirkin, B.G.: On the theory of multitape automata. Kibernetika (Kiev) 1966, No. 5, 12–18 (in russian).Google Scholar
  6. [6]
    Parikh, J.R.: Language generating devices. MIT Res.Lab. of Electronics Quarterly Progress Rep., No. 60, 199–212 (1961).Google Scholar
  7. [7]
    Rabin, M.O.; Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959) 125–144.Google Scholar
  8. [8]
    Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Develop. 10 (1966) 2, 61–75.Google Scholar
  9. [9]
    Salomaa, A.: Formal Languages. Academic Press, New York 1973.Google Scholar
  10. [10]
    Starke, P.H.: On the representability of relations by deterministic and nondeterministic multi-tape automata. Lecture Notes in Comp. Sci. 32 (1975) 114–124.Google Scholar
  11. [11]
    Starke, P.H.: Über die Darstellbarkeit von Relationen in Mehrbandautomaten. Elektron. Informationsverarb. u. Kybernetik (EIK) 12 (1976) 1/2, 61–81.Google Scholar
  12. [12]
    Starke, P.H.: Entscheidungsprobleme für autonome Mehrbandautomaten. Z.Math.Logik Grundl.Math. 22 (1976) No.1.Google Scholar
  13. [13]
    Starke, P.H.: On the diagonals of n-regular relations. EIK 12 (1976) 6, 281–288.Google Scholar
  14. [14]
    Starke, P.H.: Closedness properties and decision problems for finite multi-tape automata. Kybernetika (Praha) 12 (1976) 2, 61–75.Google Scholar
  15. [15]
    Stotskaya, E.V.: On deterministic multitape automata without end-marker. Avtomatika i Telemehanika 9 (1971) 105–110 (in russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Peter H. Starke
    • 1
  1. 1.Sektion Mathematik der Humboldt-Universität zu BerlinBerlin

Personalised recommendations