Advertisement

On the branching structure of languages

  • Ivan M. Havel
Invited Lecturers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)

Keywords

Regular Language Finite Automaton Automaton Theory Theoretical Computer Science Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Book, R. V., Formal language theory and theoretical computer science. In: Automata Theory and Formal Languages, Proc. 2nd GI Conf., Lecture Notes in Computer Science 33, Springer Verlag, Berlin 1975, pp. 1–15.Google Scholar
  2. 2.
    Štěpánková, O. and Havel, I. M., A logical theory of robot problem solving. Artificial Intelligence 7 (1976), 165–197.Google Scholar
  3. 3.
    Havel, I. M., Finite branching automata: automata theory motivated by problem solving. In: Mathematical Foundations of Computer Science (A. Blikle, Ed.) Lecture Notes in Computer Science 28, Springer-Verlag, Berlin 1975, pp. 53–61.Google Scholar
  4. 4.
    Marcus, S., Algebraic Linguistics: Analytical Models, New York 1967.Google Scholar
  5. 5.
    Benda V. and Bendová, K., On specific features of recognizable families of languages. This volumeGoogle Scholar
  6. 6.
    Havel, I. M., Finite branching automata. Kybernetika 10 (1974), pp. 281–302.Google Scholar
  7. 7.
    Bodnarčuk, V. G., Metričeskoe prostranstvo sobytij I. /The metric space of events I./ Kibernetika /Kiev/, (1965) No. 1, pp. 24–27 /In Russian/.Google Scholar
  8. 8.
    Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York 1960.Google Scholar
  9. 9.
    Havel, I. M., Nondeterministic finite branching automata. Res. Report 623/75 Institute of Information Theory and Automation ČSAV, August 1975.Google Scholar
  10. 10.
    Havel, I. M., Nondeterministically recognizable sets of languages. In: Mathematical Foundations of Computer Science 1975 (J. Bečvář, Ed.) Lecture Notes in Computer Science 32, Springer-Verlag, Berlin 1975, pp. 252–257.Google Scholar
  11. 11.
    Benda, V. and Bendová, K., Recognizable filters and ideals. Commentationes Math. Univ. Carolinae 17 (1976), to appear.Google Scholar
  12. 12.
    Benda, V. and Bendová, K., On families recognizable by finite branching automata. /Manuscript/.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Ivan M. Havel
    • 1
  1. 1.Institute of Information Theory and AutomationCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations