Advertisement

W-automata and their languages

  • Wilfried Brauer
Invited Lecturers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BH.
    F. Bartholomes, G. Hotz, Homomorphismen und Reduktionen linearer Sprachen, Lecture Notes in Operations Res. and Math. Systems 32, Springer-Verlag, Berlin 1970Google Scholar
  2. BR.
    W. Brauer, Automatentheorie, Teubner Verlag, Stuttgart, in preparationGoogle Scholar
  3. CF.
    P. Cartier, D. Foata, Problèmes combinatoires de commutation et réarrangements, Lect. Notes in Math. 85, Springer-Verlag, Berlin 1969Google Scholar
  4. CH.
    K. Čulik, I. Havel, On multiple finite automata, in W. Händler, E. Peschl, H. Unger, 3. Colloquium über Automatentheorie, 19.-22-10. 1965, Birkhäuser, Basel, 1967Google Scholar
  5. DI.
    Y.A.Dikovskii, A Note on Deterministic Linear Languages, Systems Theory Research, A Translation of Problemy Kibernetiki 23, Novosibirsk 1972, pp. 295–300Google Scholar
  6. FL.
    M. Fliess, Matrices de Hankel, J.Math. pures et appl. 53, 1974, pp. 197–222Google Scholar
  7. HW.
    C. Hoffmann-Walter, Deterministische Zwei-Band-Automaten und Eindeutigkeit linearer Sprachen, Diploma Thesis, Inst.f.Inf. Univ. Hamburg, Dec. 1975Google Scholar
  8. KS.
    R. Kurki-Suonio, Describing Automata in Terms of Languages Associated with Their Peripheral Devices, Computer Sc.Dept., Stanford Univ., Techn. Rpt. STAN-CS-75-493, May 1975Google Scholar
  9. LA.
    M. Lahnstein, Keller-Stack-Automaten und indizierte parallele Sprachen, Diploma Thesis, Inst.f.Inf. Univ. Hamburg, to be published as Techn. Rpt. IFI-HH-B, 1976Google Scholar
  10. OP.
    M.Opp, Charakterisierungen erkennbarer Termmengen in absolut freien universellen Algebren, Doctoral Dissertation, Inst.f.Inf. Univ. Hamburg, Techn. Rpt. IFI-HH-B-20/76, Feb. 1976Google Scholar
  11. RW.
    R.D. Rosebrugh, D. Wood, Restricted parallelism and right linear grammars, Utilitas Math. 7, 1975, pp. 151–186Google Scholar
  12. SA.
    A. Salomaa, Formal Languages, Academic Press, New York, 1973Google Scholar
  13. SC.
    C.-P. Schnorr, Freie assoziative Systeme, EIK 8, 1967, pp. 319–340Google Scholar
  14. SL.
    A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969Google Scholar
  15. SM.
    J.M.Smith, Monoid Acceptors and Their Relation to Formal Languages, Ph.D. Dissertation, Univ. of Pennsylvania, 1972Google Scholar
  16. SV.
    W.J. Savitch, How to make arbitrary grammars look like context-free grammars, SIAM J. Comput. 2, 1973, pp. 174–182CrossRefGoogle Scholar
  17. VO.
    H.Vogel, Zur Theorie der rationalen und deterministischen Mengen, Diploma Thesis, Mitt. Ges. Math. Datenverarb. 18, Bonn. 1972Google Scholar
  18. WA.
    S.J.Walljasper, Non-deterministic automata and effective languages, Doctoral Thesis, Univ. of Iowa, AD-69 2421, 1969Google Scholar
  19. WE.
    G. Wechsung, Isomorphe Darstellungen der Kleeneschen Algebra der regulären Mengen, Mitt. Math. Ges. DDR, 1973, Nr.2/3, pp. 161–171Google Scholar
  20. WO.
    D. Wotschke, A characterization of Boolean closures of families of languages, in: Böhling, Indermark (eds.), 1. Fachtagung über Automatentheorie und formale Sprachen, Lect. Notes Comput. Sc. 2, Springer-Verlag, Berlin, 1973, pp. 191–200Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Wilfried Brauer
    • 1
  1. 1.Institut für InformatikUniversität HamburgHamburg 13

Personalised recommendations