Exercises in denotational semantics

  • K. R. Apt
  • J. W. de Bakker
Invited Lecturers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 45)


Sequential Composition Procedure Call Proof Theory Denotational Semantic Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Bakker, J.W., Least fixed points revisited, in λ-Calculus and Computer Science Theory, Lecture Notes in Computer Science 37 (C. Böhm, ed.), p.27–61, Springer (1975).Google Scholar
  2. 2.
    De Bakker, J.W., Correctness proofs for assignment statements, Report IW 55/76, Mathematisch Centrum (1976).Google Scholar
  3. 3.
    Cook, S.A., Axiomatic and interpretive semantics for an ALGOL fragment, Technical Report no. 79, University of Toronto (1975).Google Scholar
  4. 4.
    Donahue, J.E., The mathematical semantics of axiomatically defined programming language constructs, in Proc. Symp. Proving and Improving Programs, p.353–370, IRIA (1975).Google Scholar
  5. 5.
    Gorelick, G.A., A complete axiomatic system for proving assertions about recursive and non-recursive programs, Technical Report no. 75, University of Toronto (1975).Google Scholar
  6. 6.
    Hoare, C.A.R., An axiomatic basis for programming language constructs, C.ACM 12, p.576–580 (1969).CrossRefGoogle Scholar
  7. 7.
    Hoare, C.A.R., Procedures and parameters, an axiomatic approach, in Symp. on Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188 (E. Engeler, ed.), p.102–116, Springer (1971).Google Scholar
  8. 8.
    Hoare, C.A.R. & N. Wirth, An axiomatic definition of the programming language PASCAL, Acta Inf. 2, p.335–355 (1973).CrossRefGoogle Scholar
  9. 9.
    Igarashi, S., R.L. London & D.C. Luckham, Automatic program verification I: A logical basis and its implementation, Acta Inf. 4, p.145–182 (1975).CrossRefGoogle Scholar
  10. 10.
    Manna, Z., S. Ness & J. Vuillemin, Inductive methods for proving properties of programs, C.ACM 16, p.491–502 (1973).CrossRefGoogle Scholar
  11. 11.
    Manna, Z. & J. Vuillemin, Fixpoint approach to the theory of computation, C.ACM 15, p.528–536 (1972).CrossRefGoogle Scholar
  12. 12.
    Scott, D. & C. Strachey, Towards a mathematical semantics for computer languages, in Proc. of the Symp. on Computers and Automata (J. Fox, ed.), p.19–46, Polytechnic Inst. of Brooklyn (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • K. R. Apt
    • 1
  • J. W. de Bakker
    • 1
  1. 1.Mathematisch CentrumAmsterdam

Personalised recommendations