Advertisement

V. Ein polynomialer Algorithmus zur Bestimmung unabhängiger Repräsentantensysteme

  • Ernst Specker
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 43)

Literatur

  1. Burger, Ch. N., Bemerkungen zum sogenannten Heiratsproblem, Ergebnisse eines Berliner Kolloquiums 1 (1975) 1–12.Google Scholar
  2. Frobenius, F.G., Ueber zerlegbare Determinanten, Sitz.ber. Preuss. Akad. Wiss. 1917, 274–277.Google Scholar
  3. Hall, M. Jr., An algorithm for distinct representatives, Amer. Math. Monthly 63 (1956) 716–717.Google Scholar
  4. Hall, P., On representatives of subsets, J. London Math. Soc. 10 (1935) 26–30.Google Scholar
  5. Hopcroft, J.E. and Karp Richard M., An n5/2 algorithm for maximum matchings in bipartite graphs, Siam J. Comput. 2 (1973), 225–231.Google Scholar
  6. Kameda, T. and Muro, I., A O(|V|·|E|) algorithm for maximum matching for graphs, Computing 12 (1974) 91–98.Google Scholar
  7. König, D., Ueber Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453–465.Google Scholar
  8. Mirsky, L., Transversal Theory, Academic Press, 1971.Google Scholar
  9. Rado, R., A theorem on independence relations, Quart. J. Math. (Oxford) 13 (1942) 83–89.Google Scholar
  10. J. Edmonds,Submodular functions, matroids, and certain polyhedrs. Combinatorial structures and their applications, Gordon and Breach, New York, London, Paris 1970Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Ernst Specker

There are no affiliations available

Personalised recommendations