Advertisement

Some considerations about Nelson's derivation of Schroedinger equation

  • E. Onofri
Classical Mechanics, Quantum Mechanics, Field Theory, Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 50)

Keywords

Markov Process Stochastic Differential Equation Path Space Imaginary Time Schroedinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALBEVERIO, S. and HOEGH-KROHN, R. (1973): “A remark on the connection between stochastic mechanics and the heat eauation”, Mat.Inst.Univ. Oslo, preprint No.27.Google Scholar
  2. CAUBET, J.P. (1975): “Relativistic Brownian Motion”, in “Probabilistic Methods in Differential Equations”, Ed.by M.A.Pinsky, Springer-Verlag, Berlin.Google Scholar
  3. DELA PENA-AUERBACH, L. (1969): J.Ivlath.Phys.1O, 1620CrossRefGoogle Scholar
  4. DELA PENA-AUERBACH, L. (1971): J.Ivlath.Phys.12, 453.CrossRefGoogle Scholar
  5. EZAWA, H., KLAUDER, J.R. and SHEPP, L.A. (1974): Ann.of Phys. 88(2)588.CrossRefGoogle Scholar
  6. GIHMAN, I.I. and SKOROHOD, A.V. (1972): “Stochastic Differential-Equations”. Springer-Verlag, Berlin.Google Scholar
  7. NELSON, E. (1966): Phys.Rev.15O, 1O79Google Scholar
  8. NELSON, E. (1967): “Dynamical Theories of Brownian Motion”, Princeton University Press, Princeton.Google Scholar
  9. SIMON B. (1974): “P(ø) Euclidean (Quantum) Field Theory”, Princeton University Press, Princeton.Google Scholar

Copyright information

© Spinger-Verlag 1976

Authors and Affiliations

  • E. Onofri
    • 1
    • 2
  1. 1.Istituto di Fisica dell'Università di ParmaParma
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoItaly

Personalised recommendations