Physics and deformation theory of finite and infinite Lie algebras

  • J. F. Pommaret
Mathematical Physics
Part of the Lecture Notes in Physics book series (LNP, volume 50)


Vector Bundle Structure Constant Deformation Theory Geometric Object Tensor Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    LEVY-NAHAS (M): Deformation and contraction of Lie algebras Jour. of math. Physics, vol 8, no 6, 1967, p1211–1222Google Scholar
  2. 2a).
    POMMARET (J.F.) Etude interne des systèmes linéaires d'équations aux dérivées partielles: Ann.Inst.Henri Poincare, vol 17, no 2, 1972, p131Google Scholar
  3. 2b).
    POMMARET (J.F.) Théorie des déformations de structures:, vol 18, no 4, 1973, p285Google Scholar
  4. 2c).
    Same title:Proc.3rd methods in physics Marseille,C.N.R.S.,1974,p77-102Google Scholar
  5. d).
    POMMARET (J.F.) Pseudogroupes de Lie algebriques: C.R.Acad.Sc., t280, 1975, p1693Google Scholar
  6. 3).
    RIM (D.S.): Deformations of transitive filtred Lie algebras, Ann.of Math., 83, 1966, p 339–357Google Scholar
  7. 4).
    SPENCER (D.C.): Over determined systems of linear partial differential equations, Bull. A.M.S., 1969, 75, P 179–239.Google Scholar
  8. 5).
    SPENCER (D.C.) and KUMPERA (A.):Lie equations I Study no 73 Princeton University Press 1972Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. F. Pommaret
    • 1
  1. 1.Centre de Physique Théorique Ecole PolytechniqueParis

Personalised recommendations