Wave equations for extended hadrons

  • W. Drechsler
Gauge Groups, Elementary Particles
Part of the Lecture Notes in Physics book series (LNP, volume 50)


A formalism describing extended hadrons is presented using generalized wave functions defined on a fiber bundle constructed over space-time. The structural group of the bundle is taken to be the (4+1) de Sitter group acting as a group of motion in a locally defined space of constant curvature [the fiber] possessing a radius of curvature of the order of one Fermi. A gauge theory of strong interaction is formulated in terms of the geometry in such a de Sitter fiber bundle. This geometric description does not require the existence of any constituents for hadrons and leads to three basic nonlinear wave equations of integro-differential type for the hadronic matter wave function.


Fiber Bundle Minkowski Space Hadronic Matter Frame Bundle Local Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Drechsler, Wave Equations on a de Sitter Fiber Bundle, to be published in Fortschritte der Physik, Vol. 23, 1975Google Scholar
  2. [2]
    W. Heisenberg, Talk presented at the Spring Meeting of the Deutsche Physikalische Gesellschaft, München, March 1975Google Scholar
  3. [3]
    Ch. Ehresmann, Colloque de Topologie (espaces fibré), Bruxelles, 1950, p. 29Google Scholar
  4. [4]
    A.O. Barut and A. Böhm, Phys. Rev. 139, 1107 (1965)CrossRefGoogle Scholar
  5. [5]
    A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Edizioni Cremonese, Roma 1962Google Scholar
  6. [6]
    D.R. Brill and J.A. Wheeler, Rev. Mod. Phys. 29, 465 (1957)CrossRefGoogle Scholar
  7. [7]
    P.A.M. Dirac, Ann. of Math. 36, 657 (1935)MathSciNetGoogle Scholar
  8. [8]
    F. Gürsey and T.D. Lee, Proc. Nat. Acad. Sc. 49, 179 (1963). *** DIRECT SUPPORT *** A3418042 00003Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Drechsler
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchenGermany

Personalised recommendations