Advertisement

Geometry of generalized coherent states

  • H. Bacry
  • A. Grossmann
  • J. Zak
Coherent States
Part of the Lecture Notes in Physics book series (LNP, volume 50)

Abstract

Various attempts have been made to generalize the concept of coherent states (c.s.). One of them, due to Perelomov, seems to be very promising but not restrictive enough. The Perelomov c.s. are briefly reviewed. One shows how his definition gives rise to Radcliffe's c.s. The relationship between the usual and Radcliffe's c.s. can be investigated either from group contraction point of view (Arecchi et al.) or from a physical point of view (with the aid of the Poincaré sphere of elliptic polarizations of electromagnetic plane waves). The question of finding complete subsets of c.s. is revisited and an attempt is made to restrict the Perelomov definition.

Keywords

Coherent State Weyl Group Symplectic Manifold Electromagnetic Plane Wave Bloch Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. SCHRÖDINGER Naturwissenchaften 14, 664 (1926)CrossRefGoogle Scholar
  2. [2]
    R.J. GLAUBER Phys. Rev. 131, 2766 (1963)CrossRefGoogle Scholar
  3. [3]
    J.R.KLAUDER and E.C.G.SUDARSHAN Fundamental of Quantum Optics (Benjamin 1968)Google Scholar
  4. [4]
    M. NUSSENZWEIG Introduction to Quantum Optics (Gordon and Breach, 1973)Google Scholar
  5. [5]
    F. ROCCA in the present proceedingsGoogle Scholar
  6. [6]
    P. CARRUTHERS and M.M. NIETO Rev. Mod. Phys. 4O, 411 (1968)CrossRefGoogle Scholar
  7. [7]
    V. BARGMANN Comm. Pure Appl. Math. 14, 187 (1961)Google Scholar
  8. [8]
    A.M. PERELOMOV Commun. Math. Phys. 26, 222 (1972)CrossRefGoogle Scholar
  9. [9]
    A.O.BARUT and L. GIRARDELLO Commun. Math. Phys. 21, 41 (1971)CrossRefGoogle Scholar
  10. [10]
    J.M. RADCLIFFE Journ. Phys. A4, 313 (1971)Google Scholar
  11. [11]
    P.W. ATKINS and J.C. DOBSON Proc. Roy. Soc. A 321, 321 (1971)Google Scholar
  12. [12]
    F. GÜRSEY and S. ORFANIDIS Phys. Rev. D7, 2414 (1973)Google Scholar
  13. [13]
    W. G. TAM in Proceedings 1st. Colloquium on Group Theoretical Methods in Physics, Marseille 1972 (H. Bacry, Editor), and references therein.Google Scholar
  14. [14]
    H. BACRY and N.P. CHANG Phys. Lett. B 44, 286 (1973)Google Scholar
  15. [15]
    H. BACRY in Proceedings 3rd International Colloquium on Group Theoretical Methods in Physics, Marseille 1974 (H. Bacry and A. Grossmann, Eds.)Google Scholar
  16. [16]
    R. STREATER Commun. Math. Phys. 4, 217 (1967)CrossRefGoogle Scholar
  17. [17]
    F.T. ARECCHI, E. COURTENS, R. GILMORE and H. THOMAS Phys. Rev. A6, 2211 (1972)Google Scholar
  18. [18]
    J. KUTZNER Phys. Lett. A 41, 475 (1972)Google Scholar
  19. [19]
    E.H. LIEB Commun. Math. Phys. 31, 327 (1973)Google Scholar
  20. [20]
    J. BELLISSARD and R. HOLTZ J. Math.Phys. 15, 1275 (1974)Google Scholar
  21. [21]
    W. WITSCHEL J. Phys. A7, 1847 (1974)Google Scholar
  22. [22]
    J. SCHWINGER in L.C. BIEDENHARN and VAN DAM Eds., Quantum Theory of Angular Momentum (Academic Press, 1965)Google Scholar
  23. [23]
    V. BARGMANN Rev. Mod. Phys. 34, 300 (1962)Google Scholar
  24. [24]
    J. VON NEUMANN Mathematical Foundations of Quantum Mechanics, (Princeton 1955)Google Scholar
  25. [25]
    L. MICHEL in the present proceedingsGoogle Scholar
  26. [26]
    H. BACRY J. Math. Phys. 15, 1686 (1974)Google Scholar
  27. [27]
    J. MICKELSSON and J. NIEDERLE Commun. Math. Phys. 16, 191 (197O)Google Scholar
  28. [28]
    F.A.E. PIRANI in Lectures at Brandeis Summer School 1964, vol. I (Prenctice Hall, 1965)Google Scholar
  29. [29]
    N.J. VILENKIN Special Functions and the Theory of Group Representations (American Math. Society, 1968), chapter III, section 2Google Scholar
  30. [30]
    E. INÖNU and E.P. WIGNER Proc. Nat. Acad. Sci. 39, 51O (1953)Google Scholar
  31. [31]
    E. SALETAN J, Math. Phys. 2, 1 (1961)Google Scholar
  32. [32]
    H. POINCARE Theorie mathématique de la lumière (vol. 2, Paris, 1892)Google Scholar
  33. [33]
    W. MILLER Lie Theory and Special Functions (Acad. Press 1968)Google Scholar
  34. [34]
    V. BARGMANN, P. BUTERA, L. GIRARDELLO and J.R.KLAUDER Reports on Math. Phys. 2, 221 (1971)CrossRefGoogle Scholar
  35. [35]
    A.M. PERELOMOV Theoreticheskaya i Matematicheskaya Fizika, 6, 213 (1971)Google Scholar
  36. [36]
    H. BACRY, A. GROSSMANN and J. ZAK Phys. Rev. B (to appear)Google Scholar
  37. [37]
    H. BACRY Classical Hamiltonian for a Spinning Particle (unpublished)Google Scholar
  38. [38]
    H. BACRY Commun. Math. Phys. 5, 97 (1967)CrossRefGoogle Scholar
  39. [39]
    H. BACRY in Proceedings 1st International Colloquium on Group Theoretical Methods in Physics, Marseille 1972 (H. Bacry, Editor)Google Scholar
  40. [40]
    R. ARENS Commun. Math. Phys. 21, 139 (1971)CrossRefGoogle Scholar
  41. [41]
    R. ARENS J.Math.Phys. 12, 2415 (1971)CrossRefGoogle Scholar
  42. [42]
    D. SIMMS Talk given at the present colloquium and references therein.Google Scholar
  43. [43]
    N. WOODHOUSE Talk given at the present colloquium.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. Bacry
    • 1
    • 2
  • A. Grossmann
    • 3
  • J. Zak
    • 4
  1. 1.UER Experimentale et Pluridisciplinaire de Marseille LuminyFrance
  2. 2.Centre de Physique Theorique - C.N.R.S.MARSEILLE CEDEX 2France
  3. 3.Centre de Physique TheoriqueCNRS, Marseille
  4. 4.Physics Dept.Technion, Haïfa

Personalised recommendations