Advertisement

A propos des brisures spontanés de symétrie

  • Louis Michel
Broken Symmetries
Part of the Lecture Notes in Physics book series (LNP, volume 50)

Keywords

Group Representation Theory Nous Allons Nous Obtenons Application Physique Jacobi Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Michel, Some mathematical models of symmetry breaking. Application to particle physics, (to appear in “Proceedings of 1974 Warsaw Symposium in Mathematical Physics”).Google Scholar
  2. [2]
    L. Michel, Les brisures spontanées de symétrie en physique (à parattre dans le Journal de Physique).Google Scholar
  3. [3]
    C.G.J. Jacobi, Poggendorf Annalen de Physik und Chimie 33 (1834) 229.Google Scholar
  4. [4]
    G. Bertin, L.A. Radicati, The bifurcation from the Mac Laurin to the Jacobi sequence as a second order phase transition. Preprint Scuola Normale Superiore (Pisa).Google Scholar
  5. [5]
    P.H. Roberts, Astrophys. J. 136 (1962) 1108.CrossRefGoogle Scholar
  6. [6]
    D. Kastler, Equilibrium states of matter and operator algebras, Convegno di C*-algebra, Roma (1975) (to be published).Google Scholar
  7. [7]
    D. Kastler, G. Loupias, M. Mebkhout, L. Michel, Comm. math. Phys. 27, (1972) 195.CrossRefGoogle Scholar
  8. [8]
    L. Michel, C.R. Acad. Sc. Paris 272 (1971) 433; pour plus de détails:“Proceedings 3rd Gift seminar in Theoretical Physics”, p. 49–131, Madrid 1972.Google Scholar
  9. [9]
    L. Michel, L. Radicati, Proceedings of the fifth Coral Gables Conference, “Symmetry Principles at High Energy”, p. 19, W.A. Benjamin Inc., New York, (1968).Google Scholar
  10. [10]
    L. Michel, L. Radicati, Mendeleev Symposium, Acti Accad. Sci. Torino II Sci. Fis. Mat. Natur., p. 377–389 (1971).Google Scholar
  11. [11]
    L. Michel, L. Radicati, Ann. of Phys. 66, 758–783 (1971).CrossRefGoogle Scholar
  12. [12]
    F. Pegoraro, Comm. math. phys. 42 (1975) 41.CrossRefGoogle Scholar
  13. [13]
    R. Thom, Modèles Mathématiques de la Morphogénèse, Collection 10/18, Union générale d'Editions, Paris 1974. Cours Enrico Fermi 1973, à publier.Google Scholar
  14. [14]
    J. Milner, Morse Theory, Annals of Mathematical Studies, No 51, Princeton University Press, est probablement un des meilleurs cours sur cette théorie.Google Scholar
  15. [15]
    A.G. Wassermann, Topology 8 (1969) 127.CrossRefGoogle Scholar
  16. [16]
    L. Van Hove, Phys. Rev. 89 (1953) 1189.Google Scholar
  17. [17]
    L. Landau, Phys. 2. Sovejt. 11 (1973) 545.Google Scholar
  18. [18]
    L. Landau, E.M. Lifschitz, Statistical Physics, § 136 (traduit du russe aux Editions Mir, Moscou).Google Scholar
  19. [19]
    J. Mozrzymas, Preprint Instytut Fizyki Teoretycznej Uniwersytetu Wrocławskiego, n° 306.Google Scholar
  20. [20]
    L. Michel, L. Radicati, Evolution of particle physics, p. 191 (dedicated to E. Amaldi) academic Press New York (1970).Google Scholar
  21. [21]
    L. Abellanas, J. Math. Phys., 13, 1064 (1972).Google Scholar
  22. [22]
    Pegoraro and J. Subba Rao, Nucl. Phys. B44, 221 (1972).Google Scholar
  23. [23]
    C. Darzens, Anna Phys. 76, 236 (1973).Google Scholar
  24. [24]
    R.E. Mott, N. Phys. B84 (1975) 260.Google Scholar
  25. [25]
    S. Eliezer, Phys. Let. 53B (1974) 86.Google Scholar
  26. [26]
    N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Louis Michel
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations