On wave functions in geometric quantization

  • Jedrzej Sniatycki
Geometric Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 50)


Wave Function Line Bundle Symplectic Manifold Generalize Section Geometric Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.J. Blattner, Quantization and representation theory, in Harmonic analysis on homogeneous spaces, A.M.S. Proc. Sym. Pure Math., vol. 36 (1973), pp. 147–165.Google Scholar
  2. R.J. Blattner, Pairings of half-form spaces, to appear in proceedings of Coll. Int. du C.N.R.S. “Géoméfrie symplectique et physique mathÉmatique”. Aix-en-Provence, 1974.Google Scholar
  3. K. Gaweedzki, Geometric quantization kernels, to appear.Google Scholar
  4. B. Kostant, Quantization and unitary representations, Lecture notes in Math., vol. 170 (1970), pp. 87–208, Springer, Berlin.Google Scholar
  5. B. Kostant, Symplectic spinors, Conv, di reom. Simp. e Pis. Mat., INDAM Rome, 1973, Symposia Math. series, Academic Press. Vol. XIVGoogle Scholar
  6. B. Kostant, On the definition of quantization, to appear in proceedings of Coll. Int. du C.N.R.S. “Géométrie symplectique et physique mathématique”, Aixen-Provence, 1974.Google Scholar
  7. J. Rawnsley, De Sitter symplectic spaces and their quantizations, to appear in Proc. Camb. Phil. Soc.Google Scholar
  8. D.J. Simms, Geometric quantisation of the harmonic oscillator with diagonalised Hamiltonian, Proc. of 2nd. Tnt. Coll. on croup Theoretical Methods in Physics, Nijmegen, 1973.Google Scholar
  9. D.J. Simms, Geometric quantisation of symplectic manifolds, Proc. of Tnt. Sym. on Math. Phys., Warsaw, 1974.Google Scholar
  10. D.J. Simms, Metalinear structures and a geometric quantisation of the harmonic oscillator, to appear in proceedings of Coll. Tnt. du C.N.R.S. “Geometric symplectique et physique mathématique”, Aix-en-Provence, 1974.Google Scholar
  11. J.-M. Souriau, Structures des systèmes dynamiques, Dunod, Paris, 1970.Google Scholar
  12. J. Śniatycki, Bohr-Sommerfeld quantum systems, Proc. of 3rd. Tot. Coll. on Group Theoretical Methods in Physics, Marseille, 1974.Google Scholar
  13. J. Śniatycki, Bohr-Sommerfeld conditions in geometric quantization, Reports on Math. Phys., vol. 7 (1974) p. 127–135.Google Scholar
  14. J. Śniatycki, Wave functions relative to a real polarization, to appear in Int. J. of Theor. Phys.Google Scholar
  15. J. Śniatycki, On cohomology groups Appearing in geometric quantization, to appear.Google Scholar
  16. A. Weinstein, SympZectic manifolds and their lagrangian submanifolds, Advances in Math., vol. 6 (1971), pp. 329–346.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Jedrzej Sniatycki
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCanada

Personalised recommendations