Quantisation as deformation theory,

  • F. J. Bloore
  • M. Assimakopoulos
Geometric Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 50)


Poisson Bracket Constant Curvature Deformation Theory Tensor Field Quantisation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.J. Bloore, Proc. 3rd int. toll. on group theo. methods in phys. p.104.Google Scholar
  2. [2]
    M. Lévy-Nahas, J. Math. Phys. 8 (1967) 1211.CrossRefGoogle Scholar
  3. [3]
    P. Sommers, J. Math. Phys. 14 (1973) 787.CrossRefGoogle Scholar
  4. [4]
    F.J. Bloore, Report to Colloque CNRS: Geometrie Symplectique et Physique Mathematique Aix ei Provence 1974 p 82Google Scholar
  5. [5]
    L.P. Eisenhart, Trans. Am. Math. Soc. 25 (1923) 297.MathSciNetGoogle Scholar
  6. [6]
    Kobayashi+Nomizu “Fundations of differential geometry” (Wiley, 1963) Vol. 1, Chap. V.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • F. J. Bloore
    • 1
  • M. Assimakopoulos
    • 1
  1. 1.Department of Applied Mathematics and Theoretical Physicsthe University LiverpoolEngland

Personalised recommendations