Advertisement

Geometric quantization and graded Lie algebras

  • B. Kostant
Geometric Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 50)

Keywords

Line Bundle Unitary Representation Symplectic Form Symplectic Manifold Symplectic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Blattner: Quantisation and representation theory, A.M.S. Proceedings of Symposia in Pure Mathematics, Vol. 26, 147–165, (1973)Google Scholar
  2. 2.
    J. Dixmier: Algèbres enveloppantes, Gauthier-Villars, (1974)Google Scholar
  3. 3.
    J. J. Duistermaat: Commun. Pure Appl. Math. 27, 207, (1974).Google Scholar
  4. 4.
    A. A. Kirillov: The method of orbits in representation theory, 219–230, in Lie groups and their representations, ed. I.M.Gelfand, Adam Hilger (1975).Google Scholar
  5. 5.
    B. Kostant: Quantisation and unitary representations, Lecture notes in mathematics, Vol. 170, Springer (1970).Google Scholar
  6. 6.
    B. Kostant & L. Auslander: Polarisation and unitary representations of solvable Lie groups, Inventiones Math., 14, (1971)Google Scholar
  7. 7.
    V. Maslov: Théorie des perturbations et méthodes asymptotiques, Dunod, (1973).Google Scholar
  8. 8.
    E. Onofri: Dynamical quantisation of the Kepler manifold, Preprint, Parma 1975.Google Scholar
  9. 9.
    R. Penrose: Twistor theory, its aims and achievements, Proceedings of conference on Quantum Gravity (ed. C.J. Isham), Oxford U.P. (1975)Google Scholar
  10. 10.
    J. Rawnsley: De Sitter symplectic spaces and their quantisations, Proc. Camb. Phil. Soc. (1974) 76, 473–480.Google Scholar
  11. 11.
    P. Renouard: Variétés symplectiques et quantification, These (1969), Orsay.Google Scholar
  12. 12.
    I. Segal: Quantisation of non-linear systems. Journal of Math. Physics 1 (1960), 468–488.CrossRefGoogle Scholar
  13. 13.
    J.-P. Serre: Représentations linéaires et espaces homogènes Kähleriens des groupes de Lie compacts. Séminaire Bourbaki, Exposé 100, (1954), Benjamin (1966).Google Scholar
  14. 14.
    D. J. Simms: Geometric quantisation of symplectic manifolds. Proceedings of International Symposium on Mathematical Physics, Warsaw 1974.Google Scholar
  15. 15.
    J.-M. Souriau: Structure des systèmes dynamiques, Dunod, (1970).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • B. Kostant
    • 1
  1. 1.M.I.T.CambridgeUSA

Personalised recommendations