The algebraic method in representation theory

Enveloping algebras
  • Anthony Joseph
Geometric Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 50)


Algebraic Approach Verma Module Weyl Chamber Primitive Ideal Finite Dimensional Representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Y. Aharonov and D. Bohm, Further considerations on electromagnetic potentials in the quantum theory, Phys. Rev., 123 (1961) pp. 1511–1524.CrossRefGoogle Scholar
  2. [2].
    D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra of s l(2), J. Math. Phys., 15 (1974) pp. 350–359.CrossRefGoogle Scholar
  3. [3].
    L. Auslander and B. Kostant, Quantization and representations of solvable Lie groups, Bull. Am. Math. Soc., 73 (1967) pp. 692–695.Google Scholar
  4. [4].
    —, Polarization and unitary representations of solvable Lie groups, Inv. Math., 14 (1971) pp. 255–354.CrossRefGoogle Scholar
  5. [5].
    S. Bamba, private communication.Google Scholar
  6. [6].
    P. Bernat and Coll., Représentations des groupes de Lie résolubles, Monographies Math. Soc. France, Dunod, Paris, 1972.Google Scholar
  7. [7].
    M. H. Boon, Representations of the invariance group for a. Bloch electron in a magnetic field, J. Math. Phys., 13 (1972) pp. 1268–1284.CrossRefGoogle Scholar
  8. [8].
    A. Borel, Linear algebraic groups, Benjamin, New York, 1969.Google Scholar
  9. [9].
    W. Borho, P. Gabriel and R. Rentschler, Primideale in Einhullenden auflösbarer Lie-algebren, Lecture notes in mathematics, 357, Springer-Verlag, New York, 1973.Google Scholar
  10. [10].
    W. Borho and R. Rentschler, Primitive vollprime Ideale in der Einhüllenden von so(5,¢), Vortragsberichte, Oberwolfach 1975.Google Scholar
  11. [11].
    W. Borho and H. Kraft, Über die Gelfand-Kirillov dimension, to appear.Google Scholar
  12. [12].
    W. Borho and A. Joseph, Primitive ideals in the enveloping algebras of sl(3,¢) and sp(4,¢), to appear.Google Scholar
  13. [13].
    W. Borho, Berechnung der Gelfand-Kirillov-dimension bei induzierten Darstellungen, to appear.Google Scholar
  14. [14].
    S. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians, I, II, Phys., 177 (1969) pp. 2239–2250.Google Scholar
  15. [15].
    N. Conze, Espace des idéaux primitifs de l'algèbre enveloppante dune algèbre de Lie nilpotente, J. Alg., 34 (1975) pp. 444–450.CrossRefGoogle Scholar
  16. [16].
    —, Algebres d'opérateurs différentiels et quotients des algebres enveloppantes, Bull. Soc. Math. France, 102 (1974) pp. 379–415.Google Scholar
  17. [17].
    N. Conze and J. Dixmier, Idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semisimple, Bull. Sci. Math., 96 (1972) pp. 339–351.Google Scholar
  18. [18].
    J. Dixmier, Algebres enveloppantes, Gauthier-Villars, Paris, 1974.Google Scholar
  19. [18].
    —, Sur les algebres de Weyl II, Bull. Sci. Math., 94 (1970) pp. 289–301.Google Scholar
  20. [20].
    I. M. Gelfand and A. A. Kirillov, Sur les corps lies aux algebres enveloppantes des algebres de Lie, I. H. E. S. publ. math., 31 (1966) pp. 5–19.Google Scholar
  21. [21].
    A. Grossmann, Momentum-like constants of the motion, Sect. 6. In Statistical Mechanics and field theory, Eds. R. N. Sen and C. Weil, John Wiley, New York, 1972, pp. 101–110.Google Scholar
  22. [22].
    Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc., 75 (1953) pp. 185–243.Google Scholar
  23. [23].
    I. N. Herstein, Noncommutative rings, John Wiley, New York, 1968.Google Scholar
  24. [24].
    A. Joseph and A. I. Solomon, Global and infinitesimal nonlinear chiral transformations, J. Math. Phys., 11 (1970) pp. 748–761.Google Scholar
  25. [25].
    A. Joseph, Minimal realizations and spectrum generating algebras, Commun. math. phys., 36 (1974) pp. 325–338.Google Scholar
  26. [26].
    —, A characterization theorem for realizations of s l(2), Proc. Camb. Phil. Soc., 75 (1974) pp. 119–131.Google Scholar
  27. [27].
    —, The Gelfand-Kirillov conjecture in classical mechanics and quantization, I. H. E. S. preprint, 1974.Google Scholar
  28. [28].
    —, A generalization of the Gelfand-Kirillov conjecture, C. N. R. S. Marseille preprint, 1975.Google Scholar
  29. 291.
    —, The minimal orbit in a simple Lie algebra and its associated maximal ideal, I. H. E. S. preprint, 1975.Google Scholar
  30. [30].
    A. Joseph, Realizations in classical and quantum mechanics. Proc.3rd Int. Colloq. on Group Theoretical Methods in Physics, Eds. H. Bacry and A. Grossmann, Marseille 1974, pp. 227–235.Google Scholar
  31. [31].
    A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk., 17 (1962) pp. 57–110 (Russian). [Eng. transl. Russian math. surveys 1962.Google Scholar
  32. [32].
    H. J. Lipkin, Lie groups for pedestrians, North Holland, Amsterdam, 1965.Google Scholar
  33. [33].
    J. C. McConnell, Representations of solvable Lie algebras and the GelfandKirillov conjecture, Proc. London Math. Soc., 29 (1974) pp. 453–484.Google Scholar
  34. [34].
    J. C. McConnell and J. C. Robson, Homomorphisms and extensions of modules over certain differential polynomial rings, J. Alg., 26 (1973) pp. 319–342.Google Scholar
  35. [35].
    W. Miller, Jr., Lie theory and special functions, Academic press, New York, 1968.Google Scholar
  36. [36].
    Y. Ne'eman, Algebraic theory of particle physics, Benjamin, New York, 1967, Chap. 10.Google Scholar
  37. [37].
    X. H. Nghiêm, Sur certains sous-corps commutatifs du corps enveloppant dune algèbre de Lie résoluble, Bull Sci. Math., 96 (1972) pp. 111–128.Google Scholar
  38. [38].
    S. R. Quint, Representations of solvable Lie groups, Lecture notes, University of California, Berkeley 1972 (unpublished).Google Scholar
  39. [39].
    I. Segal, An extension of a theorem of L. O'Raifeartaigh, J. Funct. Analysis 1 (1967) pp. 1–21.Google Scholar
  40. [40].
    J. Dixmier, Idéaux primitifs complétements premiers dans l'algèbre enveloppante de sl(3,¢), to appear.Google Scholar
  41. [41].
    R. F. Streater, The representations of the oscillator group, Commun. math. phys., 4 (1967) pp. 217–236.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Anthony Joseph
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBURES-sur-YVETTEFrance

Personalised recommendations