Analog/hybrid computation in biochemical engineering

  • P. L. Rogers
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 4)


It has been the objective of the review to evaluate analog/hybrid computation and to look at the areas in biochemical engineering where it is most likely to be applied. Clearly there is a vast area where pure analog and digital techniques overlap and in many cases digital solutions are far superior, being simpler and less costly. However, at both ends of the computational spectrum a case can be made for the analog or the hybrid (analog/digital) approach. Simple educational simulations involving two or three differential equations are easily solved on the analog computer and the interactive nature of the problem-solving makes the analog an excellent teaching facility. The early stages of model building bases on a small number of equations, fall into a similar category. At the more distant end of the spectrum, the hybrid computer offers considerable potential in the dynamic optimization of fermentation processes. However, on-line optimization of microbial systems is in its infancy, and time, experience and economic criteria will the final judges.


Analog Computer Dynamic Optimization Analog Circuit Analog Simulation Logic Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



b1 ... b4

Kinetic constants for penicillin model


Dilution rate (h−1)


Enzyme concentration (g/l)


Host concentration (g/l)


Inhibitor concentration (g/l)

kl ... ks

Constants for enzyme kinetics

k1 ... k6

Constants for microbial leaching mode

k1, k1

Constants for host/parasite problem


Saturation constant (g/l)


Product inhibition constant (g/l)


Substrate inhibition constant (g/l)


Specific maintenance energy requirements


Product concentration (g/l)


Scaled product concentration (g/l)


Parasite concentration


Substrate concentration (g/l)


Initial substrate concentration (g/l)


Real time


Computer time


Biomass concentration (g/l)


Scaled biomass concentration (g/l)


Yield from energy source (g biomass/ppm Fe2+)


Yield for biomass production (g biomass/g substrate)


Yield for product formation (g product/g substrate)

Greek letters


“Growth associated” kinetic constant


“Non-growth associated” kinetic constant


Specific death rate (h−1)


Magnitude scale factor


Time scale factor


Specific growth rate (h−1)


Maximum specific growth rate (h−1)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiba, S., Humphrey, A. E., Millis, N.: Biochemical Engineering, 2nd edition, University of Tokyo Press (1973).Google Scholar
  2. Aiyar, A. S., Luedeking, R.: CEP Symp. Ser. 62, 55 (1966).Google Scholar
  3. Andrews, J. F.: Biotechnol. Bioeng. 10, 707 (1968).CrossRefGoogle Scholar
  4. Andrews, J. F.: Biotechnol. Bioeng. Symp. Series No. 2, 5 (1971).Google Scholar
  5. APSE (Automatic Programming and Scaling of Equations), Electronic Associates Inc. (1973).Google Scholar
  6. Blanch, H. W., Dunn, I. J.: In: Advances in Biochemical Engineering 3 (Eds. T. K. Ghose, A. Fiechter, and N. Blakebrough), Springer-Verlag, p. 127 (1974).Google Scholar
  7. Blanch, H. W., Rogers, P. L.: Biotechnol. Bioeng. 13, 843 (1971).CrossRefGoogle Scholar
  8. Bowski, L., Saini, R., Ryu, D. Y., Vieth, W. R.: Biotechnol. Bioeng. 13, 641 (1971).CrossRefGoogle Scholar
  9. Bowski, L., Shah, P. M., Ryu, D. Y., Vieth, W. R.: Biotechnol. Bioeng. Symp. Series No. 3, 229 (1972).Google Scholar
  10. Bullin, J. A.: Environ. Sci. Tech. 8, 156 (1974).CrossRefGoogle Scholar
  11. Bungay, H. R., Bungay, L.: In: Advances in Applied Microbiology (Eds. W. W. Umbreit and D. Perlman) p. 269, Academic Press (1968).Google Scholar
  12. Canale, R. P.: Biotechnol. Bioeng. 11, 887 (1969).CrossRefGoogle Scholar
  13. Canale, R. P.: Biotechnol. Bioeng. 12, 353 (1970).CrossRefGoogle Scholar
  14. Constantinides, A., Spencer, J. L., Gaden, E. L.: Biotechnol. Bioeng. 12, 803 (1970).CrossRefGoogle Scholar
  15. Corrans, I. J., Harris, B., Ralph, B. J.: J. South African Inst. Min. Met. 72 (8), 221 (1972).Google Scholar
  16. Dean, A. C. R., Rogers, P. L.: Biochim. Biophys. Acta 148, 280 (1967).Google Scholar
  17. Dean, A. C. R., Moss, D. A.: Biochem. Pharmacol. 20, 1 (1971).CrossRefGoogle Scholar
  18. Distefano, G. P.: “Hybrid Computation in the Process Industries”, EAI, New Jersey (1968).Google Scholar
  19. Fan, L. T., Shah, P. S., Erickson, L. E.: Simulation of Biological Processes by Analog and Digital Computers, Kansas State University Report No. 20, 118 pp (1970).Google Scholar
  20. Goodwin, B. C: Temporal Organization in Cells, Academic Press (1963).Google Scholar
  21. Goodwin, B. C: Advan. Enzyme Regulation 3, 425 (1965).CrossRefGoogle Scholar
  22. Gray, P. P., Dunhill, P., Lilly, M. D.: J. Ferm. Tech. (Japan) 50 (6), 381 (1972).Google Scholar
  23. Gray, P. P., Rogers, P. L.: Biochim. Biophys. Acta 230, 393 (1971).Google Scholar
  24. Gray, P. P., Rogers, P. L.: Biochim. Biophys. Acta 230, 401 (1971).Google Scholar
  25. Handbook of Analog Computation, Electronics Associates Inc., West Long Branch, New Jersey (1971).Google Scholar
  26. Hanson, T. P., Tsao, G. T.: Biotechnol. Bioeng. 14, 233 (1972).CrossRefGoogle Scholar
  27. Harrison, D. E. F.: J. Cell Biol. 45, 4574 (1970).CrossRefGoogle Scholar
  28. Harrison, D. E. F., Topiwala, H. H.: In: Advances in Biochemical Engineering 3 (Eds. T. K. Ghose, A. Fiechter and N. Blakebrough) Springer-Verlag, p. 167 (1974).Google Scholar
  29. Higgins, J. J.: In: Computers in Biomedical Research, V. 2, Academic Press, N. Y. (1965).Google Scholar
  30. Hockenhull, D. J. D., McKenzie, R. M.: Chem. Ind. 607 (1968).Google Scholar
  31. Knorre, N. A.: Biochem. Biophys. Res. Commun. 31, 812 (1968).CrossRefGoogle Scholar
  32. Koga, S., Humphrey, A. E.: Biotechnol. Bioeng. 9, 375 (1967).CrossRefGoogle Scholar
  33. Korn, G. A., Korn, T. M.: In: Electronic Analog and Hybrid Computers, McGraw Hill, N. Y. (1972).Google Scholar
  34. Lacey, D. T., Lawson, F.: Biotechnol. Bioeng. 12, 29, (1970).CrossRefGoogle Scholar
  35. Levine, L.: In: Methods for Solving Engineering Problems using an Analog Computer, McGraw Hill, N. Y. (1964).Google Scholar
  36. Luedeking, R., Piret, E. L.: J. Biochem. Microbiol. Technol. Eng. 1, 393 (1959).CrossRefGoogle Scholar
  37. Milsum, J. H.: Biological Control Systems Analysis, McGraw Hill (1966).Google Scholar
  38. Nyiri, L. K.: In: Advances in Biochemical Engineering 2 (Eds. T. K. Ghose, A. Fiechter, N. Blakebrough), Springer-Verlag p. 49 (1972).Google Scholar
  39. Pring, M.: In: Concepts and Models of Biomathematics. Simulation Techniques and Methods. (Ed. F. Heinmets), M. Dekker Inc., p. 88 (1969).Google Scholar
  40. Pye, E. K.: Can. J. Botany 47, 271 (1969).CrossRefGoogle Scholar
  41. Reed, G., Peppier, H. J.: In: Yeast Technology, AVI Publ. (1973).Google Scholar
  42. Röpke, H., Riemann, J.: Analog Computer in Chemie and Biologie, Springer-Verlag (1969).Google Scholar
  43. Rogers, P. L.: Simulation of Microbial Systems with EAI-180 Analog/Parallel Logic Computer, EAI Applications (1972).Google Scholar
  44. Rogers, P. L., Hendy, N.: A kinetic model for microbial leaching of nickel sulphide (NiS) In preparation (1976).Google Scholar
  45. Rogers, P. L., McDonald, I. J.: Kinetic analysis of the growth of Streptococcus cremoris. In preparation (1976).Google Scholar
  46. Rosenbrock, H. H., Storey, C: Computational Techniques for Chemical Engineers, Permagon Press (1966).Google Scholar
  47. Schultz, J. S., Gerhardt, P.: In: Bacteriol. Rev. 33, 1–47 (1969).Google Scholar
  48. Selinger, B.: Simulation of Chemical Systems with the EAI-180Analog/Parallel Logic Computer, Electronic Associates Pty. Ltd. (1973).Google Scholar
  49. Shu, P.: In: Fermentation Technology Today (Ed. G. Terui), Fourth Int. Ferm. Symp. 183 (1972).Google Scholar
  50. Snyder, M. F.: Trans. Bio-Med. Eng. 16 (4), 325 (1969).CrossRefGoogle Scholar
  51. Terui, G.: J. Pure Appl. Chem. 36, 377 (1973).CrossRefGoogle Scholar
  52. Tuovinen, O. H., Kelly, D. P.: Z. Allg. Mikrobiol. 12(4), 311 (1972).CrossRefGoogle Scholar
  53. Unden, A.: Computer controlled optimization of growth parameters in continuous culture, LKB Fermentation Symposium, Moscow (1974).Google Scholar
  54. Unden, A., Heden, G. C: In: First European Conference on Computer Process Control in Fermentation. INRA, Dijon (1973).Google Scholar
  55. Williams, T. J.: Ind. Eng. Chem. 62 (12), 94 (1970).CrossRefGoogle Scholar
  56. Wong, C, Scharer, J. M., Reilly, P. M.: Can. J. Chem. Eng. 52 (5), 645, (1974).CrossRefGoogle Scholar
  57. Yano, T., Koga, S.: Biotechnol. Bioeng. 11, 139 (1969).CrossRefGoogle Scholar
  58. Young, T. B., Bruley, D. F., Bungay, H. R.: Biotechnol. Bioeng. 12, 747 (1970).CrossRefGoogle Scholar
  59. Young, T. B., Bungay, H. R.: Biotechnol. Bioeng. 15, 377 (1973).CrossRefGoogle Scholar
  60. Zines, D. O., Rogers, P. L.: Biotechnol. Bioeng. 12, 561 (1970).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. L. Rogers
    • 1
  1. 1.The University of New South WalesKensingtonAustralia

Personalised recommendations