Advertisement

Transfer of oxygen and scale-up in submerged aerobic fermentation

  • Y. Miura
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 4)

Keywords

Liquid Film Molecular Diffusion Oxygen Transfer Agitation Speed Effective Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

gas/liquid interfacial area per unit liquid volume, m2/m3

am

liquid/cell interfacial area per unit liquid volume, m2/m3

ap

liquid/pellet interfacial area per unit liquid volume, m2/m3

B

width of baffle, m

C

concentration of dissolved oxygen or penetrating component, kg-moles/m3

(CL)cr

critical oxygen concentration in liquid, kg-moles/m3

(CLi)cr

critical oxygen concentration at liquid/cell or liquid/pellet interface, kg-moles/m3

CL

concentration of dissolved oxygen in bulk of liquid, kg-moles/m3

(CL)i

initial concentration of dissolved oxygen in bulk of liquid, kg-moles/m3

CLi

concentration of dissolved oxygen at liquid/cell or liquid/pellet interface, kg-moles/m3

C*L

oxygen concentration in equilibrium with air, kg-moles/m3

C0

concentration of dissolved oxygen at center of cell or pellet kg-moles/m3

Cm

dry cell weight per unit liquid volume, kg/m3

D

agitator diameter, m

De

effective diffusion coefficient of dissolved oxygen in mycelial pellet, m2/hr

DL

molecular diffusion coefficient of dissolved oxygen or transfer material in liquid m2/hr

Dp

molecular diffusion coefficient of dissolved oxygen in mycelial pellet, m2/hr

dBM

average diameter of bubble, m

dp

diameter of particle, m

g

acceleration due to gravity, m/hr2

gc

gravitational conversion factor, kg · m/Kg · hr2, where Kg indicates gravitational unit, while kg indicates mass unit

H

depth of medium in tank, m

HG

holdup of gas in tank

HL

holdup of liquid in tank

h

clearance from tank bottom to agitator, m

kc

specific respiration coefficient defined by Eq. (15)

KL

overall mass-transfer coefficient based on liquid film around gas bubbles, m/hr

kL

mass-transfer coefficient for liquid film around gas bubbles, m/hr

Km

apparent Michaelis constant for mycelia, kg-moles/m3

Km

apparent Michaelis constant for pellet, kg-moles/m3

km

mass-transfer coefficient for liquid film around cells or pellets defined by Eq. (2), m/hr

kp

oxygen-transfer coefficient for pellet defined by Eq. (27), m/hr

kr

specific oxygen-uptake rate per unit dry mycelial weight, kg-moles of oxygen/[(hr)(kg of dry cell)]

(kr)max

maximum specific oxygen-uptake rate per unit dry mycelial weight, kg-moles of oxygen/[(hr)(kg of dry cell)]

l

length of agitator blade, m

N

agitation speed, R.P.H. or R.P.M.

NFr

Froud number defined by DN 2/g

Np

Power number defined by P 0 g cLN3 D 5

NPe

Peclet number defined by d PU/DL

NRe

Reynolds number defined by D 2LL

(NRe)p

Reynolds number for pellet defined by d PDNρLL

Pg

power consumption accompanied by aeration, Kg · m/hr

P0

power consumption without aeration, Kg · m/hr

Pmax

maximum power consumption without aeration, Kg · m/hr, where Kg indicates gravitational unit

q

volumetric flow rate of gas, m3/hr

R

radius of mycelial pellet, m

r

radial distance from center of cell or mycelial pellet, m

rL

radial distance from cell center to liquid bulk, m

r0

radius of cell, m

T

diameter of tank, m

t1/2

half-life time of oxygen concentration in liquid, min

U

relative velocity of particle and fluid, m/hr

Ut

terminal velocity of particle in free fall, m/hr

V

liquid volume in tank, m3

Vr

rapid oxygen-uptake rate per unit mycelial pellet, given by Eq. (21), kg-moles of oxygen/[(hr)(one pellet)]

Vr

oxygen-uptake rate per unit mycelial pellet, kg-moles of oxygen/[(hr)(one pellet)]

Vs

superficial gas velocity based on cross section of tank, m/hr

Vt

terminal gas velocity in free rise, m/hr

W

agitator blade width, m

x

distance for penetration direction from interface, m

void fraction

η

effectiveness factor for oxygen consumption rate per unit mycelial pellet

θ

time, hr

μL

liquid viscosity, kg/m · hr

ρ

mycelial density in pellet, kg/m3

ρL

liquid density, kg/m3

Δρ

difference in density between dispersed and continuous phases, kg/m3

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba, S.: Shin-kagakukogakukoza, Vol. 24, “Fermentation Technology”, The Industrial Daily News, Japan (1960).Google Scholar
  2. Aiba, S., Kobayashi, K.: Biotechnol. Bioeng 13, 583 (1971).CrossRefGoogle Scholar
  3. Bartholomew, W. H.: Advances in Applied Microbiology 2, 289 (1960).CrossRefGoogle Scholar
  4. Bartholomew, W. H., Karow, E. O., Sfat, M. R., Wilhelm, R. H.: Ind. Eng. Chem. 42, 1801 (1950).CrossRefGoogle Scholar
  5. Blakebrough, N., Sambamurthy, K.: Biotechnol. Bioeng 8, 25 (1966).CrossRefGoogle Scholar
  6. Brian, P. L. T., Hales, H. B.: AIChE Journal 15, 419 (1969).CrossRefGoogle Scholar
  7. Bylinkina, E. S., Birukov, V. V.: Proceedings of the 4th International Fermentation Symposium, Page 105, Kyoto (1972).Google Scholar
  8. Calderbank, P. H.: Trans, Inst. Chem. Engrs. 36, 443 (1958).Google Scholar
  9. Calderbank, P. H.: Trans. Inst. Chem. Engrs. 37, 173 (1959b).Google Scholar
  10. Calderbank, P. H., Moo-Young, M. B.: Trans. Inst. Chem. Engrs. 37, 26 (1959a).Google Scholar
  11. Calderbank, P. H., Moo-Young, M. B.: Chem. Eng. Sci. 16, 39 (1961).CrossRefGoogle Scholar
  12. Cooper, C. M., Fernstrom, G. A., Miller, S. A.: Ind. Eng. Chem. 36, 504 (1944).CrossRefGoogle Scholar
  13. Friedman, A. M., Lightfoot, E. N., Jr.: Ind. Eng. Chem. 49, 1227 (1957).CrossRefGoogle Scholar
  14. Fukuda, H., Sumino, Y., Kanzaki, T.: J. Ferment. Technol. 46, 829 (1968).Google Scholar
  15. Gaden, E. L. Jr.: Sci. Repts. Instituto Superiore di Sanita 1, 161 (1961).Google Scholar
  16. Harriott, P.: AIChE Journal 8, 93 (1962).CrossRefGoogle Scholar
  17. Hixson, A. W., Gaden, E. L. Jr.: Ind. Eng. Chem. 42, 1792 (1950).CrossRefGoogle Scholar
  18. Huang, M. Y., Bungay, H. R. 3rd: Biotechnot. Bioeng 15, 1193 (1973).CrossRefGoogle Scholar
  19. Humphrey, A. E.: J. Ferment. Technol. 42, 265 (1964a).Google Scholar
  20. Humphrey, A. E.: J. Ferment. Technol. 42, 334 (1964b).Google Scholar
  21. Kalinske, A. A.: Sewage and Ind. Waste, 27, 572 (1955).Google Scholar
  22. Kobayashi, J., Ueyama, H.: J. Ferment. Technol. 40, 63 (1962).Google Scholar
  23. Kobayashi, T., Dedem, G. V., Moo-Young, M. B.: Biotechnol. Bioeng 15, 27 (1973).CrossRefGoogle Scholar
  24. Levich, V. G.: Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.Google Scholar
  25. Maxon, W. D.: J. Biochem. Microbiol. Techn. Eng. 1, 311 (1959).CrossRefGoogle Scholar
  26. Michel, B. J., Miller, S. A.: AIChE Journal 8, 262 (1962).CrossRefGoogle Scholar
  27. Midler, M., Jr., Finn, R. K.: Biotechnol. Bioeng 8, 71 (1966).CrossRefGoogle Scholar
  28. Miller, D. N.: AIChE Journal 20, 445 (1974).CrossRefGoogle Scholar
  29. Miura, Y.: Dissertation, Kyoto University, Kyoto, Japan, 1961.Google Scholar
  30. Miura, Y., Hirota, S.: J. Ferment. Technol. 44, 890 (1966).Google Scholar
  31. Miura, Y., Kanamori, T., Miyamoto, K.: 1st Pacific Chemical Engineering Congress, Kyoto, Japan (1972).Google Scholar
  32. Miura, Y., Miyamoto, K., Kanamori, T., Teramoto, M., Ohira, N.: in press (1975)Google Scholar
  33. Miura, Y., Miyamoto, K., Matsuda, R.: Preprint of 88th Annual meeting of The Pharmaceutical Society of Japan, Tokyo, 443 (1968).Google Scholar
  34. Nagata, S., Yamaguchi, I., Nishikawa, M., Wada, K.: Chem. Eng. (Japan), 31, 1016 (1967).Google Scholar
  35. Nagata, S., Yamamoto, K., Yokoyama, T., Shiga, S.: Chem. Eng. (Japan) 21, 708 (1957).Google Scholar
  36. Nagata, S., Yokoyama, T., Maeda, H.: Chem. Eng. (Japan) 20, 582 (1956).Google Scholar
  37. Oyama, Y., Endoh, K.: Chem. Eng. (Japan), 19, 2 (1955).Google Scholar
  38. Perez, J. F., Sandall, O. C: AIChE Journal 20, 770 (1974).CrossRefGoogle Scholar
  39. Phillips, D. H.: Biotechnol. Bioeng 8, 456 (1966).CrossRefGoogle Scholar
  40. Richards, J. W.: Progr. Ind. Microbiol. 3, 141 (1961)Google Scholar
  41. Robinson, C. W., Wilke, C. R.: Proceedings of the 4th International Fermentation Symposium, 73 (1972).Google Scholar
  42. Roxburgh, J. M., Spencer, J. F. T., Sallans, H. R.: Agr. Food Chem. 2, 1121 (1954).CrossRefGoogle Scholar
  43. Rushton, J. H., Costich, E. W., Everett, J. H.: Chem. Eng. Progr. 46, 395 (1950).Google Scholar
  44. Satterfield, C. N.: Mass Transfer in Heterogeneous Catalysis, M. I. T. Press (1970).Google Scholar
  45. Steel, R., Maxon, W. D.: Biotechnol. Bioeng 4, 231 (1962).CrossRefGoogle Scholar
  46. Steel, R., Maxon, W. D.: Biotechnol. Bioeng 8, 97 (1966a).CrossRefGoogle Scholar
  47. Steel, R., Maxon, W. D.: Biotechnol. Bioeng 8, 109 (1966b).CrossRefGoogle Scholar
  48. Strohm, J. A., Dale, R. E., Peppier, H. J.: Appl. Microbiol. 7, 235 (1959).Google Scholar
  49. Taguchi, H., Miyamoto, S.: Biotechnol. Bioeng 8, 43 (1966).CrossRefGoogle Scholar
  50. Taguchi, H., Suga, K., Yoshida, T.: Proceedings of the 4th International Fermentation Symposium, 83 (1972).Google Scholar
  51. Taguchi, H., Yoshida, T.: J. Ferment. Technol. 46, 814 (1968).Google Scholar
  52. Terui, G., Konno, N., Sase, M.: Techn. Report of Osaka Univ. 10, 527 (1960a).Google Scholar
  53. Terui, G., Konno, N., Sase, M.: J. Ferment. Technol. 38, 278 (1960b).Google Scholar
  54. Tsao, G. T.: Biotechnol. Bioeng 10, 765 (1968).CrossRefGoogle Scholar
  55. Tsao, G. T.: ibid. 11, 1071 (1969).CrossRefGoogle Scholar
  56. Tsao, G. T.: ibid. 12, 51 (1970).CrossRefGoogle Scholar
  57. Tsao, G. T., Mukerjee, A., Lee, Y. Y.: Proceedings of the 4th International Fermentaion Symposium, 65 (1972).Google Scholar
  58. Vermeulen, T., Williams, G. M., Langlois, G. E.: Chem. Eng. Progr., 51, 85F (1955).Google Scholar
  59. Wegrich, O. G., Shurter, R. A.: Ind. Eng. Chem. 45, 1153 (1953).CrossRefGoogle Scholar
  60. Westerterp, K. R., Dierendonck, L. L. van, Dekraa, J. A.: Chem. Eng. Sci. 18, 157 (1963).CrossRefGoogle Scholar
  61. Wise, D. L., Wang, D. I. C, Mateles, R. I.: Biotechnol. Bioeng. 11, 647 (1969).CrossRefGoogle Scholar
  62. Yano, T., Kodama, K., Yamada, K.: Agr. Biol. Chem. 25, 580 (1961).Google Scholar
  63. Yano, T., Yamada, K.: Institute Appl. Microbiol. Symp. on Microbiol., No. 5, 16 (1963).Google Scholar
  64. Yoshida, F., Ikeda, A., Imakawa, S., Miura, Y.: Ind. Eng. Chem., 52, 435 (1960).CrossRefGoogle Scholar
  65. Yoshida, F., Miura, Y.: Ind. Eng. Chem. Process Design and Development 2, 263 (1963).CrossRefGoogle Scholar
  66. Yoshida, T., Shimizu, T., Taguchi, H., Teramoto, S.: J. Ferment. Technol. 45, 1119 (1967).Google Scholar
  67. Yoshida, T., Taguchi, H., Teramoto, S.: J. Ferment. Technol. 46, 119 (1968).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Y. Miura
    • 1
  1. 1.Dept. of Biochemical Engineering, Faculty of Pharmaceutical SciencesOsaka UniversitySuita, OsakaJapan

Personalised recommendations