Application of the optimal control theory with distributed parameters on a searching problem

  • Olavi Hellman
Optimal Control Stochastic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)


Probability Density Unknown Function Optimal Control Problem Parabolic Equation Optimal Control Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    O.A.Ladyzenskaya, V.A. Solonnikov, and N.N.Uraltseva, Linear and quasi-linear parabolic equations, AMS,Trans.Math.Monogr. 23 (1968)Google Scholar
  2. [2]
    O.Hellman, On the optimal search for a randomly moving target. SIAM J.Appl.Math.22,545–552Google Scholar
  3. [3]
    B.O.Koopman, Search and screening, OEG Rep. 56, Washington D.C.,(1946)Google Scholar
  4. [4]
    L.O.Saretsalo, On stochastic models of search for stationary and moving objects, Publication of the institute for applied mathematics, University of Turku, Finland, (1971) (Dissertation).Google Scholar
  5. [5]
    O. Hellman, On the effect of search upon the probability distribution of a target whose motion is a diffusion process, Ann.Math.Statitst. 41 (1970), pp. 1717–1724.Google Scholar
  6. [6]
    J.L. Lions, Controle optimal de systems gouvernes par des equations aux derivees partielles, Dunod Gauthier-Villars, Paris (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Olavi Hellman
    • 1
  1. 1.University of TurkuTurkuFinland

Personalised recommendations