Optimal control problems in sobolev spaces with weights. Numerical approaches applications to plasma optimal control and time delay problems

  • Claudia Simionescu
Optimal Control Deterministic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)


We consider systems for which the state , y(t,u) , is given by the solution of the equation
$$(P(t,D)y,v)_H + a(t;y,v) = (g + Bu,v)_H v \in V$$
in the sense of scalar distributions , where

A generalized class of optimal control problems with a quadratic performance criterion is considered and existence and unicity results are obtained.

The optimality system is studied, approximations for the solutions are given and applications to time-delay problems and plasma optimal control problems are shown .

Similar control problems for particular cases have been considered by the author in [11], [12], [13]. The definitions and nonations are the same as in , .

Since the technique of proving the existence and uniqueness of the solution in all cases is the same as the one we have been used in [11], [12], and [13] , we shell resume ourselves to only give the results and comment them.


Optimal Control Problem Canonical Injection Injection Versus Time Delay Problem Quadratic Performance Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1].
    Balakrishnan, A.V.: "Foundations of the state space theory of continuous systemy " I Journal of Computer and System Sciences, I, 1967Google Scholar
  2. [2].
    Kailath, T:"A view of Three Decades of Linear Filtring Theory" — I.E.E.E. Transaction on Unformation Theory, vol. IT-20, 2,1974Google Scholar
  3. [3].
    Lions, J.L.: "Thèse", Acta Mathematica, 95 (1955), 13–153Google Scholar
  4. [4].
    -"-:"Boundary value problems", Univ. of Kansas, 1957Google Scholar
  5. [5].
    -"-:"Equations differentielles operationnelles et problèmes aux limites",Springer Verlag, 1961Google Scholar
  6. [6].
    -"-:"Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles", Dunod, Gauthier-Villars, 1968Google Scholar
  7. [7].
    -"-:"Some aspects of the optimal control of distributed parameter systems"-SIAM-series, Philadelphia,Pe.19103,1972Google Scholar
  8. [8].
    Oguztöreli,M.N.: "Time-Lag Control Systems"-Acad. Press 1966Google Scholar
  9. [9].
    Schwartz, L:"Théorie des distributions" Paris, Hermann, 1950Google Scholar
  10. [10].
    -"-:"Distributions à valeurs vectorielles"-Annales de l'Institut Fourier 1958Google Scholar
  11. [11].
    Simionescu, Cl.: "O problemĂ de control optimal" Buletinul UniversitĂţii din Braşov,Seria C,vol.XV,1973Google Scholar
  12. [12].
    -"-:"Optimal control problems in distributions" Proceedings of the UNESCO-Seminar in modeling and optimization techniques Bucureşti-Braşov, 3–5 June 1975 (under print)Google Scholar
  13. [13].
    -"-:" Optimal control problems in Sobolev spaces with weights" SIAM Journal on Control, 14-1, Ja-1976Google Scholar
  14. [14].
    Temam,R: "Résolution approchée d'équations aux dérivées partielles" Press Universitaires de France, 1970Google Scholar
  15. [15].
    Trèves,F.:"Domination et problèmes aux limites de type mixte", C.R.Acad.Sci.Paris. (245) 1957,pg. 2454, 1957Google Scholar
  16. [16].
    -"-:"Thèse"— Acta Mathematica 101 (1959) pg. 1–139Google Scholar
  17. [17].
    Williams;M.M.R.: "Mathematical Mathods in Particle Transport Theory"-London-Butterwarth.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Claudia Simionescu
    • 1
  1. 1.Department of MathematicsUniversity of BrasovBraşovR.S. Romania

Personalised recommendations