Advertisement

Un calcul symbolique non commutatif pour les asservissements non linéaires et non stationnaires

  • Michel Fliess
Optimal Control Deterministic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)

Keywords

Bilinear System Volterra Kernel Volterra Series Representation Dimension Finie Partient Encore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliographie

  1. 1.
    -d'Alessandro (P.), Isidori (A.) et Ruberti (A.).—Realization and structure theory of bilinear systems.SIAM J. Control,12,1974,p. 567–615.Google Scholar
  2. 2.
    -Barrett (J.F.).—The use of functionals in the analysis of nonlinear physical models.J. Electronics Control,15,1963,p. 567–615.Google Scholar
  3. 3.
    -Brockett (R.W.).—On the algebraic structure of bilinear systems, in "Theory and Applications of Variable Structure Systems" (R.R. Mohler et A. Ruberti,éd.),p. 153–168.Academic Press, New York,1972.Google Scholar
  4. 4.
    -Brockett (R.W.).—Lie algebras and Lie groups in control theory, in "Geometric Methods in System Theory" (D.Q. Mayne et R.W. Brockett, éd.),p. 43–82.D. Reidel, Dordrecht,1973.Google Scholar
  5. 5.
    -Brockett (R.W.).—Volterra series and geometric control theory. Proc. 6th IFAC Congr.,Cambridge (Mass.),1975.Google Scholar
  6. 6.
    -Brockett (R.W.).—Nonlinear systems and differential geometry. Proc. IEEE,63,1975.Google Scholar
  7. 7.
    -Brockett (R.W.).—Functional expansions and higher order necessary conditions in optimal control, in "Algebraic System Theory" (G. Marchesini, éd.). Lect. Notes Math.,Springer-Verlag, Berlin, à paraitre.Google Scholar
  8. 8.
    -Bruni (C.),DiPillo (G.) et Koch (G.).—Bilinear systems:an appealing class of "nearly linear" systems in theory and applicatio applications.IEEE Trans. Autom. Contr.,19,1974,p. 334–348.Google Scholar
  9. 9.
    -Chomsky (N.) et Schützenberger (M.P.).—The algebraic theory of context-free languages,in "Computer Programming and Formal Systems" (P. Braffort et D. Hirschberg,éd.),p. 118–161.North-Holland, Amsterdam, 1963.Google Scholar
  10. 10.
    -Cohn (P.M.).—Algebra and language theory.Bull. London Math. Soc., 7,1975,p. 1–29.Google Scholar
  11. 11.
    -Cori (R.).—Un code pour les graphes planaires.Astérisque no 27, 1975.Google Scholar
  12. 12.
    -Eilenberg (S.).—Automata, languages and machines,vol. A.Academic Press, New York,1974.Google Scholar
  13. 13.
    -Flake (R.H.).—Volterra series representation of nonlinear systems.AIEE Trans.,81,1963,p. 330–335.Google Scholar
  14. 14.
    -Flake (R.H.).—Volterra series representation of time varying nonlinear systems,Proc. 2nd IFAC Congr. (Bale,1963),p. 91–99. Butterworths, London et R. Oldenbourg,Munich,1964.Google Scholar
  15. 15.
    -Fliess (M.).—Sur la réalisation des systèmes dynamiques bilinéaires.C.R. Acad. Sc. Paris,A-277,1973,p. 923–926.Google Scholar
  16. 16.
    -Fliess (M.).—Sur divers produits de séries formelles.Bull. Soc. Math. France,102,1974,p. 181–191.Google Scholar
  17. 17.
    -Fliess (M.).—Matrices de Hankel.J. Math. Pures Appl.,53,1974, p. 197–222.Google Scholar
  18. 18.
    -Fliess (M.).—Séries de Volterra et séries formelles non commutatives.C.R. Acad. Sc. Paris,A-280,1975,p. 965–967.Google Scholar
  19. 19.
    -Fliess (M.).—Un outil algébrique:les séries formelles non commutatives, in "Algebraic System Theory" (G. Marchesini, éd.).Lect. Notes Math.,Springer-Verlag, Berlin,à paraître.Google Scholar
  20. 20.
    -Krener (A.J.).—Bilinear and nonlinear realizations of input-output maps.SIAM J. Control,13,1975,p. 827–834.Google Scholar
  21. 21.
    -Lévy (P.).—Problèmes concrets d'analyse fonotionnelle.Gauthier-Villars, Paris,1951.Google Scholar
  22. 22.
    -Lo (J. T.-H.).—Signal detection on Lie groups,in "Geometric Methods in System Theory" (D.Q. Mayne et R.W. Brockett,éd.),p. 295–304.D. Reidel, Dordrecht,1973.Google Scholar
  23. 23.
    -Marcus (S.I.).—Estimation and analysis of nonlinear stochastic systems.Ph. D. Thesis,Dept. Electrical Engin. Comput. Sci.,M.I.T., Cambridge (Mass.),1975.Google Scholar
  24. 24.
    -Reddy (P.K.) et Reddy (D.C.).—Volterra kernels in nonlinear systems.Electronics Lett.,9,1973,p. 426–427.Google Scholar
  25. 25.
    -Schützenberger (M.P.).—On the definition of a family of automata. Inform. Control,4,1961,p. 245–270.Google Scholar
  26. 26.
    -Stratonovich (R.L.).—A new representation for stochastic integrals grals and equations (traduit du russe). SIAM J. control, 4, 1966, p. 362–371.Google Scholar
  27. 27.
    -Sussmann (H.J.).-Semigroup reprsentation, bilinear approximation of input-output maps, and generalized inputs, in "Algebraic System Theory" (G. Marchesini, éd.). Lect. Notes Math., Springer-Verlag, Berlin, à paraître.Google Scholar
  28. 28.
    -Wiener (N.).-Nonlinear problems in random theory.M.I.T. Press, Cambridge (Mass.), 1958.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Michel Fliess
    • 1
  1. 1.Université Paris VIII et Centre d'Automatique de l'Ecole des Mines de ParisFrance

Personalised recommendations