Theoretical and practical aspects of coordination by primal method

  • K. B. Malinowski
  • J. Szymanowski
Mathematical Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)


Linear Programming Problem Conjugate Gradient Method Nonempty Interior Coordination Strategy Feasible Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    A. Auslender — Problémes de Minimax via L'Analyse Convexe et les Inégalites variationnelles: Théorie et Algorithmes. Springer-Verlag, Berlin, Heidelberg, New York 1972.Google Scholar
  2. [2]
    Findeisen W. — Parametric Optimization by Primal Method in Multilevel Systems. IEEE Trans. on Syst.Sci.and Cybernetics, vol. SSC-4, no. 2, 1968.Google Scholar
  3. [3]
    Findeisen W. — Multilevel Control Systems, WNT, Warsaw, 1974 /in Polish/.Google Scholar
  4. [4]
    Findeisen W., Szymanowski J., Wierzbicki A. — Computational Methods of Optimization, to appear in WNT, Warsaw /in Polish/.Google Scholar
  5. [5]
    Golshtein E.G. — Teoriya dvoistvennosti v matematicheskom programmirovani i ee prilozheniya, Nauka, Moscow 1972/in Russian/Google Scholar
  6. [6]
    Ioffe A., Tikhomirov W. — Teoriya ekstremalnykh zadach. Nauka Moskow 1974.Google Scholar
  7. [7]
    Kiczko R. — Analysis of the application of the methods of feasible directions to multilevel problems of optimization. MSc. thesis, Institute of Automatic Control,Tech.University of Warsaw, Warsaw 1974 /in Polish/.Google Scholar
  8. [8]
    Kreglewski T., Malinowski K. — Application of the best direction of improvement method on the supremal level of parametric optimization. Proceedings of the VI KKA,Poznań 1974,Poland /in Polish/.Google Scholar
  9. [9]
    Lasdon L.S. — Optimization Theory for Large Systems. The MacMillan Comp., New York 1970.Google Scholar
  10. [10]
    Malinowski K. — Applicability conditions for multilevel methods of static optimization. Podstawy sterowania. Vol. 2, z.4. Kraków 1972 / in Polish/.Google Scholar
  11. [11]
    Malinowski K. — The Properties of Parametric Optimization by Primal Methods in Multilevel Optimization Problems. Systems Science. Vol. 1, Wrocław 1975.Google Scholar
  12. [12]
    Malinowski K. — Multilevel methods of mathematical programming and complex system optimization. PhD Dissertation. Institute of Automatic Control.Techn.University of Warsaw,Warsaw 1974 /in Polish/.Google Scholar
  13. [13]
    Mesarowic M., Macko D., Takahara Y. — Theory of Hierarchical, Multilevel, Systems. Academic Press, New York 1970.Google Scholar
  14. [14]
    Polak E. — Computational Methods in Optimization. Academic Press, New York 1971.Google Scholar
  15. [15]
    Rockafellar P.T. — Convex Analysis. Princeton University Press, 1970.Google Scholar
  16. [16]
    Woźniak A. — Conditions of applicability for two-level parametric optimization. Podstawy sterowania. Vol. 3. z. 1. Kraków 1973 /in Polish/Google Scholar
  17. [17]
    Woźniak A. — Two-level system optimization by parametric method. Proceedings of the VI KKA, Wrocław 1974, Poland /in Polish/.Google Scholar
  18. [18]
    Pshenichnyi B.N. — Convex multi-valued mappings and their conjugates. In Mathematical Models in Economics (ed. J. Łos and M. W. Łos). NORTH-HOLLAND Pub. Comp. — Amsterdam and PWN — Warszawa, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • K. B. Malinowski
    • 1
  • J. Szymanowski
    • 1
  1. 1.Institute of Automatic ControlTechnical University of WarsawWarsawPoland

Personalised recommendations