Theoretical and practical aspects of coordination by primal method

  • K. B. Malinowski
  • J. Szymanowski
Mathematical Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)


Linear Programming Problem Conjugate Gradient Method Nonempty Interior Coordination Strategy Feasible Direction 


  1. [1]
    A. Auslender — Problémes de Minimax via L'Analyse Convexe et les Inégalites variationnelles: Théorie et Algorithmes. Springer-Verlag, Berlin, Heidelberg, New York 1972.Google Scholar
  2. [2]
    Findeisen W. — Parametric Optimization by Primal Method in Multilevel Systems. IEEE Trans. on Syst.Sci.and Cybernetics, vol. SSC-4, no. 2, 1968.Google Scholar
  3. [3]
    Findeisen W. — Multilevel Control Systems, WNT, Warsaw, 1974 /in Polish/.Google Scholar
  4. [4]
    Findeisen W., Szymanowski J., Wierzbicki A. — Computational Methods of Optimization, to appear in WNT, Warsaw /in Polish/.Google Scholar
  5. [5]
    Golshtein E.G. — Teoriya dvoistvennosti v matematicheskom programmirovani i ee prilozheniya, Nauka, Moscow 1972/in Russian/Google Scholar
  6. [6]
    Ioffe A., Tikhomirov W. — Teoriya ekstremalnykh zadach. Nauka Moskow 1974.Google Scholar
  7. [7]
    Kiczko R. — Analysis of the application of the methods of feasible directions to multilevel problems of optimization. MSc. thesis, Institute of Automatic Control,Tech.University of Warsaw, Warsaw 1974 /in Polish/.Google Scholar
  8. [8]
    Kreglewski T., Malinowski K. — Application of the best direction of improvement method on the supremal level of parametric optimization. Proceedings of the VI KKA,Poznań 1974,Poland /in Polish/.Google Scholar
  9. [9]
    Lasdon L.S. — Optimization Theory for Large Systems. The MacMillan Comp., New York 1970.Google Scholar
  10. [10]
    Malinowski K. — Applicability conditions for multilevel methods of static optimization. Podstawy sterowania. Vol. 2, z.4. Kraków 1972 / in Polish/.Google Scholar
  11. [11]
    Malinowski K. — The Properties of Parametric Optimization by Primal Methods in Multilevel Optimization Problems. Systems Science. Vol. 1, Wrocław 1975.Google Scholar
  12. [12]
    Malinowski K. — Multilevel methods of mathematical programming and complex system optimization. PhD Dissertation. Institute of Automatic Control.Techn.University of Warsaw,Warsaw 1974 /in Polish/.Google Scholar
  13. [13]
    Mesarowic M., Macko D., Takahara Y. — Theory of Hierarchical, Multilevel, Systems. Academic Press, New York 1970.Google Scholar
  14. [14]
    Polak E. — Computational Methods in Optimization. Academic Press, New York 1971.Google Scholar
  15. [15]
    Rockafellar P.T. — Convex Analysis. Princeton University Press, 1970.Google Scholar
  16. [16]
    Woźniak A. — Conditions of applicability for two-level parametric optimization. Podstawy sterowania. Vol. 3. z. 1. Kraków 1973 /in Polish/Google Scholar
  17. [17]
    Woźniak A. — Two-level system optimization by parametric method. Proceedings of the VI KKA, Wrocław 1974, Poland /in Polish/.Google Scholar
  18. [18]
    Pshenichnyi B.N. — Convex multi-valued mappings and their conjugates. In Mathematical Models in Economics (ed. J. Łos and M. W. Łos). NORTH-HOLLAND Pub. Comp. — Amsterdam and PWN — Warszawa, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • K. B. Malinowski
    • 1
  • J. Szymanowski
    • 1
  1. 1.Institute of Automatic ControlTechnical University of WarsawWarsawPoland

Personalised recommendations