Advertisement

A mixt relaxation algorithm applied to quasi-variationnal inequations

  • J. C. Miellou
Computational Techniques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)

Keywords

Relaxation Method Free Boundary Problem General Frame Relaxation Algorithm Partial Order Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliographie

  1. ALBRECHT, J. Fehlerschranken und konvergenzbescheunigung Bei einer Monotonen oder Alterniendev iterationsfolge. Numer. Math., 4, (1962), 196–208.Google Scholar
  2. BAIOCCHI, C.; COMINCIOLI, V.; GUERRI, L.; VOLPI, G. Free boundary problems in the theory of fluid flow through pourous media: a numerical approach. Calcolo 10, (1973), 1–86.Google Scholar
  3. BENSOUSSAN, A.; GOURSAT, M.; LIONS, J.L. C.R. Acad. Sci. PARIS Sér. A, (1973), 1279.Google Scholar
  4. BIRKHOFF, G.; KELLOGG, R. Solution of equilibrium equatons in thermal networks. Proc. Symp. generalized Networks BROOKLYN, (1966), 443–452.Google Scholar
  5. BOHL. Nichtlineare aufgaben in halb geordneten raumen. Numer. Math. 10, (1964), 220–231.Google Scholar
  6. CHARNAY, M. Itérations chaotiques sur un produit d'espaces. C.R. Acad. Sci. PARIS, t. 279, (1964).Google Scholar
  7. CHARNAY, M.; MUSY, F.; ROBERT, F. Itérations chaotiques série-parallèle pour des équations non linéaires de point fixe. A paraître dans Aplikace Mathematiky.Google Scholar
  8. CHARNAY, M. Thèse de 3ème cycle, Université Claude Bernard, LYON (1975).Google Scholar
  9. CHARNAY, M.; MUSY, F. Sur le théorème de Stein-Rosenberg. R.A.I.R.O., R-2, (1974), 95–108.Google Scholar
  10. CHAZAN, D.; MIRANKER, W. Chaotic relaxation. Linear algebra and its appl., 2, (1969), 199–222.Google Scholar
  11. COLLATZ, L. Functional analysis and numerical mathematics. Springer Verlag, Berlin, Tranl. by H. OSER, Acad. Press, New-York, (1966).Google Scholar
  12. DONNELLY, J.D.P. Periodic chaotic relaxation. Linear algebra and its appl., 4, (1971), 117–128.Google Scholar
  13. DURAND, J.F. L'algorithme de Gauss-Seidel appliqué à un problème unilatéral non symétrique. R.A.I.R.O., R-2, (1972), 23–30.Google Scholar
  14. FIORIOT, J.-Ch.; HUARD, P. Relaxation chaotique en optimisation. Publication du laboratoire de Calcul de l'Université de Lille, (1974).Google Scholar
  15. GORENFLO, R.; SCHAUM, H.J. Monoton einschliessende Iterationsverfahren für invers-isotone diskretisierung nicht-linearer Zwei-Punkt-Randwertaufgaben zweiter Ordnung. Lectures Notes in Math., 395, Springer-Verlag, Berlin, (1974), 177–198.Google Scholar
  16. KANTOROVICH, L. The method of successive approximations for functionnal equations. Acta Math., 71, (1939), 63–97.Google Scholar
  17. KRASNOSELSKII. Approximate solution of operator equations. Walters Nordkoff Publishing Groningen, (1972).Google Scholar
  18. LEGAY. Exposé au Colloque sur les méthodes numériques en calcul scientifique et technique. AFCET, Chatenay-Malabry, Nov. 1974.Google Scholar
  19. MAURIN. Exposé à la 7th IFIP Conference on optimisation techniques. NICE, Septembre 1975.Google Scholar
  20. MIELLOU, J.C. C.R. Acad. Sci. PARIS, 278, série A, (1974), p. 957.Google Scholar
  21. MIELLOU, J.C. Exposé au séminaire IMAG (Univ. de GRENOBLE, avril 1974), et au Colloque National d'Analyse Numérique de GOURETTE, Juin 1974.Google Scholar
  22. MIELLOU, J.C. C.R. Acad. Sci. Paris, 280, série A, (1975), 233–236.Google Scholar
  23. MOSCO, U.; SCARPINI, F. Complementarity systems and approximation of variational inequalities. R.A.I.R.O., R-1, gème année, (1975), 83–104.Google Scholar
  24. ORTEGA, J.M.; RHEINBOLDT, W.C. Iterative solution of non linear equations in severale variables. Academic Press, (1970).Google Scholar
  25. OSTROWSKI, A. Determination mit überwiegender Haupt diagonale und die absolute Konvergenz von linearen Iterationsprozessen. Commun. Math. Helv., 30, (1955), 175–210.Google Scholar
  26. PORSHING, T. Jacobi and Gauss-Seidel Methods for non linear network problems. SIAM J. Numer. Anal. 6, (1969), 437–449.Google Scholar
  27. RHEINBOLDT, W.C. J. Math. Anal. and Appl. 32, (1970), 274–307.Google Scholar
  28. ROUX, J. EDF, Bulletin de la direction des études et recherches. Série C, Math.-Inform., no 2, (1972), 77–90; no 1, (1973), 43–54.Google Scholar
  29. SCHECHTER, S. Relaxation methods for linear equations. Commun. Pure and Appl. Math., 12, (1959), 313–335.Google Scholar
  30. SCHECHTER, S. Iteration methods for non linear problems. Trans. AMS, 104, (1962), 179–189.Google Scholar
  31. SCHRODER, J. An wendung von fixpunksatzen bei der numerischen behandlung nichtlinearen gleichungen in halb geordneten raumen. Arch. National Mech. Anal., 4, 177–192.Google Scholar
  32. TARTAR, L. C.R. Acad. Sci. PARIS, 278, série A, (1974), 1193.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • J. C. Miellou
    • 1
  1. 1.Faculté des Sciences et des Techniques La Bouloie — Route de GrayBesancon Cedex

Personalised recommendations