Advertisement

Problemes Inverses De Valeurs Propres

  • B. Rousselet
Optimal Design
Part of the Lecture Notes in Computer Science book series (LNCS, volume 41)

Keywords

Elliptic Partial Differential Equation Optimum Design Problem Simultaneous Iteration VALEURS PROPRES Formula Concernant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliographie

  1. [1]
    BATHE Solution methods for large generalized eigenvalue problems in tructural engineering, University of California (1971)Google Scholar
  2. [2]
    BENSASSON Optim, une subroutine en Fortran IV à allocation dynamique de mémoire, pour résoudre les problèmes d'optimisation non linéaires (1974) (preprint)Google Scholar
  3. [3] [, 1]
    CEA Optimisation, théorie et algorithme (Dunod)Google Scholar
  4. [, 2]
    CEA Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier, 14, 2 (1964)Google Scholar
  5. [4]
    CHENAIS On the existence of a solution in a domain identification problem (J. Math. Anal. Appli. (1975))Google Scholar
  6. [5]
    DERVIEUX — PALMERIO Hadamard's variational formulas in optimum design problems (Communication à ce même Congrès)Google Scholar
  7. [6]
    DERVIEUX — PALMERIO — ROUSSELET Dessin optimal d'une cellule de réacteur nucléaire (à paraître)Google Scholar
  8. [7]
    DIEUDONNE Calcul infinitésimal (Hermann)Google Scholar
  9. [8]
    GARABEDIAN and SCHIFFER Variational problems in the theory of elliptic partial differential equations. J. of Rat. Mechanics and Anal. 2, 137–171 (1953)Google Scholar
  10. [9]
    GOULAOUIC C.I.M.E. (1973, Third Session); Théorie spectrale de problèmes aux limites irréguliers; applicationsGoogle Scholar
  11. [10]
    HADAMARD Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Oeuvres de Jacques Hadamard, C.N.R.S. Paris (1968)Google Scholar
  12. [11]
    JENNINGS and ORR Application of the simultaneous iteration method to undamped vibration problems. Internat. J. for Num. Methods in Engineering 3, 13–24 (1971)Google Scholar
  13. [12]
    KAC Can one hear the shape of a drum, A. Math. Monthly (1954)Google Scholar
  14. [13]
    KATO Perturbation theory for linear operators (Springer: Die Grundlehren der mathematischen Wissenschaften)Google Scholar
  15. [14]
    MICHELETTI Perturbazione dello spretto di un operatore di tipo variazionale in relazione ad una variazione del campo. Annali di Matematica pura ed applicate. Vol XCVII (1973)Google Scholar
  16. [15]
    MURAT — SIMON Etude de quelques problèmes d'optimal design (communication à ce même Congrès)Google Scholar
  17. [16]
    RAYLEIGH The theory of sound (New York Dover Publications)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • B. Rousselet
    • 1
  1. 1.Département de MathématiquesUniversité de NiceNice

Personalised recommendations