Search and montecarlo techniques for determining reservoir operating policies

  • A. Colorni
  • G. Fronza
Operational Research
Part of the Lecture Notes in Computer Science book series (LNCS, volume 40)


Reservoir Model Water Resource Research Operating Rule Reservoir Management Stochastic Environment 


  1. [1]
    W. Rippl, "The Capacity of Storage Reservoir for Water Supply", Proceedings of the I.C.E., Vol. 71, 1883.Google Scholar
  2. [2]
    H. Hurst, "Methods of Using Long Term Storage in Reservoirs", Proceedings of the I.C.E., paper 6059, 1956.Google Scholar
  3. [3]
    W. Feller, "The Asymptotic Distribution of the Range of Sums of Indipendent Random Variables", Annual of Mathematical Statistics, Vol. 22, 1951.Google Scholar
  4. [4]
    A. Anis, H. Lloyd, "On the Range of Partial Sums of a Finite Number of Independent Normal Variates", Biometrika, Vol. 42, 1955.Google Scholar
  5. [5]
    P. Moran: "The Theory of Storage", Methuen, London, 1959.Google Scholar
  6. [6]
    R. Dorfman, "Mathematical Models: the Multistructure Approach" in A. Maass et al.: "Design of Water-Resource Systems", Harvard University Press, Cambridge (USA), 1962.Google Scholar
  7. [7]
    Hall W., Butcher W., Esogbue A., "Optimization of the Operation of a Multiple Purpose Reservoir by Dynamic Programming", Water Resources Research, June 1968.Google Scholar
  8. [8]
    Buras N., "Scientific Allocation of Water Resources", American Elsevier, New York, 1972.Google Scholar
  9. [9]
    Hufschmidt, M., and M. Fiering, "Simulation Techniques for Design of Water-Resource Systems", Harvard University Press, 212 pp., Cambridge, Massachusetts, 1966.Google Scholar
  10. [10]
    G. Young, "Finding Reservoir Operating Rules", Proceedings of the A.S.C.E., Vol. 93, n. HY6, 1967.Google Scholar
  11. [11]
    Thomas A., Fiering M., "The Nature of the Storage Yield Function", in "Operations Research in Water Quality Management" Harvard University Water Program, Cambridge, U.S.A., 1963.Google Scholar
  12. [12]
    N. Matalas, J. Wallis, "Statistical Properties of Multivariate Fractional Noise Processes", Water Resources Research, v.7, n. 6, December 1971.Google Scholar
  13. [13]
    P.E. O'Connell, "Stochastic Modelling of Long-term Persistence in Steamflow Sequences" Imperial College — London, Hydrology Section, Internal Report 1973–2.Google Scholar
  14. [14]
    R. Clarke, "Mathematical Models in Hydrology", Irrigation and Drainage Paper 19 — F.A.O. — Roma 1973.Google Scholar
  15. [15]
    C. Revelle, E. Joeres, W. Kirby, "The Linear Decision Rule in Reservoir Management and Design Development of the Stochastic Model", Water Resources Research, Vol. 5, n. 4, 1969.Google Scholar
  16. [16]
    Eisel L.M., "Chance Constrained Reservoir Model", Water Resources Research, v. 8, n. 2, April 1972.Google Scholar
  17. [17]
    G. Box, G. Jenkins, "Time Series Analysis: Forecasting and and Control", San Francisco, Holden-day Inc.Google Scholar
  18. [18]
    J. Hammersley, D. Handscomb, "Monte Carlo Methods", Metheun, London, 1965.Google Scholar
  19. [19]
    Wilde D., Beightler C. "Foundations of Optimization", Prentice Hall Inc. 1967.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. Colorni
    • 1
  • G. Fronza
    • 1
  1. 1.Istituto di Elettrotecnica ed Elettronica Centro Teoria dei Sistemi — Politecnico di MilanoItaly

Personalised recommendations