Optimisation in the modelling of digestive tract electrical signals

  • D. A. Linkens
Medicine And Biology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 40)


Spontaneous electrical rhythms have been recorded in many parts of the digestive tract in animals and humans. The signals contain a low frequency regular oscillation which varies in frequency and waveshape between parts of the tract and between species. A mathematical model postulated for these rhythms comprises a set of mutually coupled Van der Pol oscillators. For the human small and large intestines where signals are nearly sinusoidal the method of harmonic balance is used to obtain analytical results for amplitude, phase and entrained frequency. The non-linear algebraic equations are solved using hill-climbing methods due to Rosenbrock, Powell and Fletcher-Reeves. Algorithms requiring first derivatives of the minimised functions have been found significantly faster than the Rosenbrock method.


Harmonic Balance Stable Limit Cycle Harmonic Balance Method Myoelectrical Activity Basic Rhythm 

7. References

  1. 1.
    Alvarez, W. C. and Mahoney, L. J., ‘Action currents in stomach and intestine', Am. J. Physiol., 1922, 58, p.476.Google Scholar
  2. 2.
    Duthie, H. L., ‘Electrical activity of gastrointestinal smooth muscle', GUT, 1974, 15, p.669.Google Scholar
  3. 3.
    Bulbring, E., ‘The role of electrophysiology in the investigation of factors controlling intestinal motility', Rendic. R. Gastroenterol., 1970, 2, p.197.Google Scholar
  4. 4.
    Kwong, N. K., Brown, B. H., Whittaker, G. E. and Duthie, H. L., ‘Electrical activity of the gastric antrum in man', Brit. J. Surg., 1970, 57, p.913.Google Scholar
  5. 5.
    Christensen, J., Schedl, H. P., and Clifton, J. A., ‘The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal man and in patients with a variety of diseases', Gastroenterology, 1966, 50, p.309.Google Scholar
  6. 6.
    Christensen, J., Caprilli, R. and Lund, G. F., ‘Electric slow waves in circular muscle of cat colon', A. J. Physiol., 1969, 217, p.77.Google Scholar
  7. 7.
    Wankling, W. J., Brown, B. H., Collins, C. D. and Duthie, H. L., ‘Basal electrical activity in the anal canal in man', GUT, 1968, 9, p.457.PubMedGoogle Scholar
  8. 8.
    Robertson-Dunn, B. and Linkens, D. A., ‘A mathematical model of the slow-wave electrical activity of the human small intestine', Med. & Biol. Eng., 1974, p.750.Google Scholar
  9. 9.
    Taylor, I., Duthie, H. L., Smallwood, R., Brown, B. H. and Linkens, D. A., ‘The effect of stimulation on the myoelectrical activity of the rectosigmoid in man', GUT, 1974, 15, p.599.PubMedGoogle Scholar
  10. 10.
    Bedi, B. S., Code, C. F., ‘Pathway of coordination of postprandial, antral and duodenal action potentials', Am. J. Physiol., 1972, 22, p.1295.Google Scholar
  11. 11.
    Szurszewski, J. H., ‘A migrating electric complex of the canine small intestine', Am. J. Physiol., 1969, 217, p.1757.Google Scholar
  12. 12.
    Corazziari, E., Delle Fave, G. F., Melchiorri, P. and Torsoli, A., ‘Effects of Bombesin on gallbladder and duodeno-jejunal mechanical activity in man', Proc. 4th Int. Symposium on ‘Gastro intestinal Motility', Banff, Canada, Sept., 1973, p.293.Google Scholar
  13. 13.
    Sarna, S. K., Bowes, K. L. and Daniel, E. E., ‘Postoperative gastric electrical control activity in man', Proc. 4th Int. Symposium on Gastrointestinal Motility, Banff, Canada, Sept. 1973, p.73.Google Scholar
  14. 14.
    Brown, B. H., Smallwood, R. H., Duthie, H. L. and Stoddard, C. J., ‘Intestinal smooth muscle electrical potentials recorded from surface electrodes', Med. & Biol. Eng., 1975, p.97.Google Scholar
  15. 15.
    Linkens, D. A. and Cannell, A. E., ‘Interactive graphics analysis of gastrointestinal electrical signals', IEEE Trans. Biomed. Eng., 1974, p.335.Google Scholar
  16. 16.
    Linkens, D. A. and Temel, B. Z., ‘The use of Walsh transforms in the analysis of gastro-intestinal signals', Int. Symposium on Theory & Application of Walsh Functions, Hatfield, July 1975.Google Scholar
  17. 17.
    Sarna, S. K., Daniel, E. E. and Kingma, Y. J., ‘Simulation of the electrical control activity of the stomach by an array of relaxation oscillators', Am. J. Dig. Dis., 1972, 17, p.299.Google Scholar
  18. 18.
    Linkens, D. A., Taylor, I. and Duthie, H. L., ‘Mathematical modelling of the colorectal myoelectrical activity in humans', IEEE Trans. Bio. Med. Eng., to be published.Google Scholar
  19. 19.
    Herman-Taylor, J. and Code, C. F., ‘Localisation of the duodenal pacemaker and its role in the organisation of duodenal myoelectrical activity', GUT, 1971, 12, p.40.PubMedGoogle Scholar
  20. 20.
    Van der Pol, B., ‘Forced oscillation in a circuit with non-linear resistance (reception with reactive triode)', Phil. Mag., 1927, 3, p.65.Google Scholar
  21. 21.
    Lawden, D. F., ‘Mathematics of Engineering Systems', Methuen, 1961, p.349.Google Scholar
  22. 22.
    Linkens, D. A., ‘Analytical solution of large numbers of mutually coupled nearly sinusoidal oscillators', IEEE Trans. Cct. & Sys., 1974, Cas-21, p.294.Google Scholar
  23. 23.
    Rosenbrock, H. H., ‘An automatic method for finding the greatest or least value of a function', Comput.J., 1960, 3, p.175.Google Scholar
  24. 24.
    Powell, M. J. D., ‘A Fortran subroutine for unconstrained minimisation requiring first derivatives of the objective function', 1960 UKAEA Res.Gp. Report, AERE R6469.Google Scholar
  25. 25.
    Fletcher, R. and Reeves, C. M., ‘Function minimisation by conjugate gradients', 1964, Comput.J., 7, p.149.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • D. A. Linkens
    • 1
  1. 1.Department of Control EngineeringThe University of SheffieldSheffieldEngland

Personalised recommendations