Optimisation des Processus de Fermentation en Continu

Medicine And Biology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 40)


The knowledge of a mathematical model of the kinetics of growth of single cell microorganisms and of the physical system enabling to cultivate them leads to the mathematical formulation of the problem.

Duality and gradient methods have been used to realize the minimisation of the industrial cost of the process, the production of biomasse per hour being given. Because of non linearity of the state equations and of non convexity of the cost function, Uzawa and Arrow-Hurwicz algorithms have been improved so that the convergence is obtained in 30 sec. on Univac 1110.


Devient Positif Phase Gazeuse Single Cell Protein Production Industrial Cost Single Cell Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. PERINGER, H. BLACHERE, G.CORRIEU et A.G. LANE: "Mathematical model of the kinetics of growth of Saccharomyces Cerivisiae 4th Int. Ferment. Symp., Kyoto, Japan, 1972.Google Scholar
  2. 2.
    P. PERINGER, H. BALCHERE, G. CORRIEU et A.G. LANE: "A Generalized Mathematical Model for the Growth Kinetics of Saccharomyces Cerivisiae with Experimental Determination of Parameters". Biotechnology and Bioengineering, Vol. XVI, 1974.Google Scholar
  3. 3.
    J. BLUM, P. PERINGER, H. BLACHERE: " Optimal Single Cell Protein Production from Yeasts in a Continuous Fermentation Process". 1st Intersectional Congress of the International Association of Microbiological Societies. Sept. 74. Tokyo.Google Scholar
  4. 4.
    S. AIBA, A. HUMPHREY, N. MILLIS: Biochemical Engineering Academic Press. 1965.Google Scholar
  5. 5.
    KUHN, TUCKER: "Non linear Programming": Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability" University of California Press. 1961.Google Scholar
  6. 6.
    ARROW-HURWICZ-UZAWA: Studies in Linear and Non Linear Programming: Stanford University Press. 1958.Google Scholar
  7. 7.
    R. GLOWINSKI: "Méthodes Itératives Duales pour la minimisation de fonctionnelles convexes". CIME 1971. Edizioni Cremonese. Rome 1973.Google Scholar
  8. 8.
    J.L. LIONS: Some aspects of the Optimal Control of Distributed Parameter Systems: SIAM. Philadelphia. 1972.Google Scholar
  9. 9.
    J.P. YVON: "Application des méthodes duales au contrôle optimal". Cahier de l'IRIA. 1971.Google Scholar
  10. 10.
    D. LEROY: "Méthodes numériques en contrôle optimal". Thèse 3ème cycle. Paris 1972.Google Scholar
  11. 11.
    J. CEA: Optimisation. Théorie et Algorithmes. Dunod 1971.Google Scholar
  12. 12.
    M. OKABE, S. AIBA, M. OKADA: "The modified complex Method as Applied to an Optimization of Aeration and Agitation in Fermentation". J. Ferment. Technol. Vol. 51. No8. 1973.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Blum
    • 1
  1. 1.Laboratoire d'Analyse NumériqueC.N.R.S. et PARIS VIParisFrance

Personalised recommendations