Advertisement

The size frequency distribution and rate of production of microcraters

  • D. A. Morrison
  • E. Zinner
2 In Measurement of Interplanetary Dust 2.2 Lunar Studies and Simulation Experiments
Part of the Lecture Notes in Physics book series (LNP, volume 48)

Abstract

Crater size frequency distributions vary to a degree which probably cannot be explained by variations in lunar surface orientation of the crater detectors or changes in micrometeoroid flux. Questions of sample representativity suggest that high ratios of small to large craters of micrometeoroids (e.g., a million 1.0 micron craters for each 500 micron crater) should be the most reliable. We obtain a flex for particles producing 0.1 micron diameter craters of approximately 300 per cm per steradian per year. We observe no anisotropy in the submicron particle flux between the plane of the ecliptic and the normal in the direction of lunar north. No change in flux over a 106 year period is indicated by our data.,

Keywords

Solar Flare Ecliptic Plane Track Density Size Frequency Distribution Diameter Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanford G. E., Fruland R. M., McKay D. S., and Morrison D. A. (1974) Lunar surface phenomena: Solar flare track gradients, microcraters, and accretionary particles. Proc. Lunar Sci. Conf. 5th, pp. 2501–2526.Google Scholar
  2. Blanford G. E., Fruland R. M., and Morrison D. A. (1975) Long term differential energy spectrum for solar flare iron-group particles. Proc. Lunar Sci. Conf. 6th.Google Scholar
  3. Brownlee D. E., Hörz F., Vedder J. F., Gault D. E., Hartung J. B. (1973) Some physical properties of micrometeoroids. Proc. Lunar Sci. Conf. 4th, pp. 3197–3212.Google Scholar
  4. Brownlee D. E., Hörz F., Hartung J. B., Gault D. E. (1975) Density chemistry and size distribution of interplanetary dust. Proc. Lunar Sci. Conf. 6th.Google Scholar
  5. Fechtig H., Hartung J. B., Nagel K., and Neukum G. (1974) Lunar microcrater studies, derived meteoroid fluxes, and comparison with satellite-borne experiments. Proc. Lunar Sci. Conf. 5th, pp. 2463–2474.Google Scholar
  6. Hartung J. B. and Storzer D. (1974) Lunar microcraters and their solar flare track record. Proc. Lunar Sci. Conf. 5th, pp. 2527–2541.Google Scholar
  7. Hutcheon I. D., Macdougall D., and Price P. B. (1974) Improved determination of the long term Fe spectrum from 1 to 460 MeV/amu. Proc. Lunar Sci. Conf. 5th, pp. 2561–2576.Google Scholar
  8. Hutcheon I. D. (1975) Microcraters in oriented vugs — evidence for an anisotropy in the micrometeoroid flux. In Lunar Science VI, p. 421, The Lunar Science Institute, Houston.Google Scholar
  9. Mandeville F. (1975) Microcraters observed on 15015 breccia, Abs. 6th Lunar Sci. Conf. The Lunar Science Institute, Houston.Google Scholar
  10. Morrison D. A., McKay D. S., Fruland R. M., and Moore H. V. (1973) Microcraters on Apollo 15 and 16 rocks. Proc. Lunar Sci. Conf. 4th, pp. 3235–3253.Google Scholar
  11. Morrison D. A., Zinner E. (1975) Studies of solar flares and impact craters in partially protected crystals. Proc. Lunar Sci. Conf. 6th.Google Scholar
  12. Poupeau G., Walker R. M., Zinner E., and Morrison D. (1975) Surface exposure history of individual grains. Proc. Lunar Sci. Conf. 6th.Google Scholar
  13. Schneider E., Storzer D., Mehl B., Hartung J. B., Fechtig H., and Gentner W. (1973) Microcraters on Apollo 15 and 16 samples and corresponding dust fluxes. Proc. Lunar Sci. Conf. 4th, pp. 3277–3290.Google Scholar
  14. Yuhas D. E. (1974) The particle track record in lunar silicates: long-term behavior of solar and galactic VH nuclei and lunar surface dynamics. Ph.D. thesis, Washington University, St. Louis.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • D. A. Morrison
    • 1
  • E. Zinner
    • 2
  1. 1.NASA Johnson Space CenterHouston
  2. 2.McDonnell Center for the Space SciencesWashington UniversitySt. Louis

Personalised recommendations