Advertisement

Lunar microcraters and interplanetary dust fluxes

  • Jack B. Hartung
2 In Measurement of Interplanetary Dust 2.2 Lunar Studies and Simulation Experiments
Part of the Lecture Notes in Physics book series (LNP, volume 48)

Abstract

Conflicting data for depth-to-diameter ratios for lunar microcrater pits do not permit firm conclusions for distribution of meteoroid densities. The majority of meteoroids have equidimensional shapes. Meteoritic metal spherules have been detected in a small fraction of impact pit glasses, but contribution of meteoroidal material to most pit glasses is small to negligible. Impact pits less than 0.1l microns in diameter (impacting particle mass 10−16 grams) have been observed. Size distributions for microcrater pits less than 50 microns in diameter (particle mass < 10−9 grams) measured on different samples differ significantly. An inflection in the cumulative size distribution curve at a diameter between 1 and 10 microns (particle masses between 10−14 and 10−11 grams) appears real, supporting the idea of a two-component model for the interplanetary dust. Data for the arrival direction of meteoroids at the moon are inconclusive.

Meteoroid flux determinations depend critically on surface exposure time measurements. Exposure time “clocks” are based on the accumulation of nuclear reaction products, etchable tracks, and sputter erosion produced by galactic cosmic ray, solar flare, and solar wind particles encountering the lunar surface. A serious problem for flux determinations is the difficulty in assuring that exposure time “clocks” measure only the time a surface is exposed to cratering. Therefore, suggestions of a lower meteoroid flux in the past must continue to be viewed with caution. Improved sample selection and cross-calibration of exposure time “clocks” should lead to better meteoroid flux and flux history measurements in the future.

Keywords

Solar Wind Lunar Surface Interplanetary Dust Lunar Rock Cosmogenic Nuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashworth D.G. and McDonnell J.A.M. (1973) Lunar surface microerosion related to interplanetary dust particle distributions. In Space Research-XIII, pp. 1071–1083. Akademie-Verlag, Berlin.Google Scholar
  2. Ashworth D.G. and McDonnell J.A.M. (1974) Micrometeorite influx rates on the lunar surface deduced from revised estimates of the solar wind sputter rate and lunar surface crater statistics. In Space Research-XIV, pp. 723–729. Akademie-Verlag, Berlin.Google Scholar
  3. Barber D.J., Cowsik R., Hutcheon I.D., Price P.B., and Rajan R.S. (1971) Solar flares, the lunar surface, and gas-rich meteorites. Proc. Lunar Sci. Conf. 2nd, p. 2705–2714.Google Scholar
  4. Behrmann C., Crozaz G., Drozd R., Hohenberg C., Ralston C., Walker R., and Yuhas D. (1973) Cosmic-ray exposure history of North Ray and South Ray material. Proc. Lunar Sci. Conf. 4th, p. 1957–1974.Google Scholar
  5. Bhandari N., Bhat S., Lal D., Rajagopalan G., Tamhane A.S., and Venkatavaradan V.S. (1971) High resolution time averaged (millions of years) energy spectrum and chemical composition of iron-group cosmic ray nuclei at 1 A.U. based on fossil tracks in Apollo samples. Proc. Lunar Sci. Conf. 2nd, p. 2611–2619.Google Scholar
  6. Blanford G.E., Fruland R.M., McKay D.S., and Morrison D.A. (1974) Lunar surface phenomena: Solar flare track gradients, microcraters, and accretionary particles. Proc. Lunar Sci. Conf. 5th, p. 2501–2526.Google Scholar
  7. Blanford G.E., Fruland R.M., and Morrison D.A. (1975) Long term differential energy spectrum for solar flare iron-group particles. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  8. Bloch M.R., Fechtig H., Gentner W., Neukum G., and Schneider E. (1971) Meteorite impact craters, crater simulations, and the meteoroid flux in the early solar system. Proc. Lunar Sci. Conf. 2nd, p. 2639–2652.Google Scholar
  9. Brownlee D.E., Hörz F., Vedder J.F., Gault D.E., and Hartung J.B. (1973) Some physical parameters of micrometeoroids. Proc. Lunar Sci. Conf. 4th, p. 3197–3212.Google Scholar
  10. Brownlee D.E., Hörz F., Hartung J.B., and Gault D.E. (1975) Density, chemistry, and size distribution of interplanetary dust. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  11. Chao E.C.T., Borman J.A., Minkin J.A., James O.B., and Desborough G.A. (1970). Lunar glasses of impact origin: Physical and chemical characteristics and geologic implications. J. Geophys. Res. 75, 7445–7479.Google Scholar
  12. Crozaz G. and Walker R. (1971) Solar particle tracks in glass from the Surveyor III spacecraft. Science 171, 1237–1239.Google Scholar
  13. Crozaz G., Haack U., Hair M., Maurette M., Walker R., and Woolum D. (1970) Nuclear track studies of ancient solar radiations and dynamic lunar surface processes. Proc. Apollo 11 Lunar Sci. Conf. p. 2051–2080.Google Scholar
  14. Crozaz G., Walker R., and Woolum D. (1971) Nuclear track studies of dynamic surface processes on the moon and the constancy of solar activity. Proc. Lunar Sci. Conf. 2nd, p. 2543–2558.Google Scholar
  15. Crozaz G., Drozd R., Hohenberg C., Morgan C., Ralston C., Walker R., and Yuhas D. (1974) Lunar surface dynamics: Some general conclusions and new results from Spollo 16 and 17. Proc. Lunar Sci. Conf. 5th, p. 2475–2499.Google Scholar
  16. Durrani S.A., Khan H.A., Bull R.K., Dorling G.W., and Fremlin J.H. (1974) Charged-particle and micrometeorite impacts on the lunar surface. Proc. Lunar Sci. Conf. 5th, p. 2543–2560.Google Scholar
  17. Fechtig H., Hartung J.B., Nagel K., and Neukum G. (1974) Lunar microcrater studies, derived meteoroid fluxes, and comparison with satellite-borne experiments. Proc. Lunar Sci. Conf. 5th, p. 2463–2474.Google Scholar
  18. Fechtig H., Gentner W., Hartung J.B., Nagel K., Neukum G., Schneider E., and Storzer D. (1975) Microcraters on lunar samples. Proc. Soviet-American Conf. on Cosmochemistry of the Moon and the Planets, June 1974, in press.Google Scholar
  19. Finkel R.C., Arnold J.R., Imamura M., Reedy R. C., Fruchter J.S., Loosli H.H., Evans J.C., Delany A.C., and Shedlovsky J.P. (1971) Depth variations of cosmogenic nuclides in a lunar surface rock and lunar soil. Proc. Lunar Sci. Conf. 2nd, p. 1773–1789.Google Scholar
  20. Fleischer R.L., Price P.B., Walker R.M. and Maurette M. (1967a) Origins of fossil charged particle tracks in meteorites. J. Geophys. Res. 72, 331–353.Google Scholar
  21. Fleischer R.L., Price P.B., Walker R.M., Maurette M., and Morgan G. (1967b) Tracks of heavy primary cosmic rays in meteorites. J. Geophys. Res. 72, 355–366.Google Scholar
  22. Fleischer R.L., Haines E.L., Hart H.R.,Jr., Woods R.T., and Comstock G.M. (1970) The particle track record of the Sea of Tranquility. Proc. Apollo 11 Lunar Sci. Conf. p. 2103–2120.Google Scholar
  23. Fleischer R.L., Hart H.R.,Jr., Comstock G.M., and Evwaraye A.O. (1971a) The particle track record of the Ocean of Storms. Proc. Lunar Sci. Conf. 2nd, p. 2559–2568.Google Scholar
  24. Fleischer R.L., Hart H.R., Jr., and Comstock G.M. (1971b) Very heavy solar cosmic rays: Energy spectrum and implications for lunar erosion. Science 171, 1240–2342.Google Scholar
  25. Gault D.E. (1970) Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and implications. Radio Sci. 5, 273–291.Google Scholar
  26. Gault D.E. (1973) Displaced mass, depth, diameter and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon 6, 32–44.Google Scholar
  27. Gault D.E., Hörz F., and Hartung J.B. (1972) Effects of microcratering on the lunar surface. Proc. Lunar Sci. Conf. 3rd, p. 2713–2734.Google Scholar
  28. Gibbons R.V., Morris R.V., Hörz F., and Thompson T.D. (1975) Petrographic and ferromagnetic resonance studies of experimentally shocked regolith analogues. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  29. Hartung J.B., Hörz, McKay D.S., and Baiamonte F.L. (1972a) Surface features on glass spherules from the Luna 16 sample. The Moon 5, 436–446.Google Scholar
  30. Hartung J.B., Hörz F., and Gault D.E. (1972b) Lunar microcraters and interplanetary dust. Proc. Lunar Sci. Conf. 3rd, p. 2735-2753.Google Scholar
  31. Hartung J.B., Hörz F., Aitken F.K., Gault D.E., and Brownlee D.E. (1973) The development of microcrater populations on lunar rocks. Proc. Lunar Sci. Conf. 4th, p. 3213–3234.Google Scholar
  32. Hartung J.B. and Storzer D. (1974) Lunar microcraters and their solar flare track record. Proc. Lunar Sci. Conf. 5th, p. 2527–2541.Google Scholar
  33. Hartung J.B., Hodges F., Hörz F., and Storzer D. (1975) Microcrater investigations on lunar rock 12002. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  34. Hörz F., Hartung J.B., and Gault D.E. (1971) Micrometeorite craters on lunar rock surfaces. J. Geophys. Res. 76, 5770–5798.Google Scholar
  35. Hörz F., Brownlee D.E., Fechtig H., Hartung J.B., Morrison D.A., Neukum G., Schneider E., Vedder J.F., and Gault D.E. (1975a) Lunar microcraters: Implications for the micrometeoroid complex. Planet. Space Sci. 23, 151–172.Google Scholar
  36. Hörz F., Morrison D.A., Gault D.E., Oberbec V.R., Quaide W.L., Vedder J.F., Brownlee D.E., and Hartung J.B. (1975b) The micrometeoroid complex and evolution of the lunar regolith. Proc. Soviet-American Conf. on Cosmochemistry of the Moon and Planets, June 1974, in press.Google Scholar
  37. Hörz F., Gibbons V.R., Gault D.E., Hartung J.B., and Brownlee D.E. (1975c) Some correlations of rock exposure ages and regolith dynamics. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  38. Housley R.M., Grant R.W., Muir A.H.,Jr., Blander M., and Abdel-Gawad M. (1971) Mössbauer studies of Apollo 12 samples. Proc. Lunar Sci. Conf. 2nd, p. 2125–2136.Google Scholar
  39. Hutcheon I.D. (1975) Microcraters in oriented vugs-evidence for anisotropy in the micrometeoroid flux (abstract). In Lunar Science VI, p. 420-422. The Lunar Science Institute, Houston.Google Scholar
  40. Hutcheon I.D., MacDougall D., and Price P.B. (1974) Improved determination of the longterm average Fe spectrum from < 1 to < 460 MeV/amu. Proc. Lunar Sci. Conf. 5th, p. 2561–2576.Google Scholar
  41. Keith J.E. and Clark R.S. (1974) The saturated activity of 26A1 in lunar samples as a function of chemical composition and the exposure ages of some lunar samples. Proc. Lunar Sci. Conf. 5th, p. 2105–2119.Google Scholar
  42. Lal, D. (1969) Recent advances in the study of fossil tracks in meteorites due to heavy nuclei of the cosmic radiation. Space Sci. Rev. 9, 623–650.Google Scholar
  43. Lal D., MacDougall D., Wilkening L., and Arrhenius G. (1970) Mixing of the lunar regolith and cosmic ray spectra, new evidence from fossil particle-track studies. Proc. Apollo 11 Lunar Sci. Conf. p. 2295-2303.Google Scholar
  44. Marti K. (1967a) Mass-spectrometric detection of cosmic-ray-produced K81 in meteorites and the possibility of Kr-Kr dating. Phys. Rev. Lett. 18, 264–266.Google Scholar
  45. McDonnell J.A.M. and Ashworth D.G. (1972) Erosion phenomena on the lunar surface and meteorites. In Space Research-XII, p. 333–347. Akademie-Verlag, Berlin.Google Scholar
  46. McDonnell J.A.M. and Flavill R.P. (1974) Solar wind sputtering on the lunar surface: Equilibrium crater densities related to past and present microparticle influx rates. Proc. Lunar Sci. Conf. 5th, p. 2441–2449.Google Scholar
  47. McDonnell J.A.M. and Carey W.C. (1975) Solar wind sputter erosion of microcrater populations on the lunar surface. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  48. McDonnell J.A.M., Ashworth D.G.; Flavill R.P., Bateman D.C., and Jennison R.C. (1974) Microparticle flux distributions and erosion parameters-Temporal flux variations deduced. 18th COSPAR Meeting, Sao Paulo, Brazil. To be published in Planetary and Space Research.Google Scholar
  49. Morrison D.A. and Zinner E. (1975) Studies of solar flares and impact craters in partially protected crystals. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  50. Morrison D.A., McKay D.S., Moore H.J., and Heiken G.H. (1972) Microcraters on lunar rocks. Proc. Lunar Sci. Conf. 3rd, p. 2767–2791.Google Scholar
  51. Morrison D.A., McKay D.S., Fruland R.M., and Moore H.V. (1973) Microcraters on Apollo 15 and 16 rocks. Proc. Lunar Sci. Conf. 4th, p. 3235–3253.Google Scholar
  52. Nagel K., Neukum G., Eichhorn G., Fechtig H., MUller 0., and Schneider E. (1975) Dependencies of microcrater formation on impact parameters. Proc. Lunar Sci. Conf. 6th, in press.Google Scholar
  53. Neukum G., Mehl A., Fechtig H., and Zähringer J. (1970) Impact phenomena of micrometeorites on lunar surface materials. Earth Planet. Sci. Lett. 8, 31–35.Google Scholar
  54. Neukum G., Schneider E., Mehl A., Storzer D., Wagner G.A., Fechtig H., and Bloch M.R. (1972) Lunar craters and exposure ages derived from crater statistics and solar flare tracks. Proc. Lunar Sci. Conf. 3rd, p. 2793–2810.Google Scholar
  55. Neukum G., Hörz F., Morrison D.A., and Hartung J.B. (1973) Crater populations on lunar rocks. Proc. Lunar Sci. Conf. 4th, p. 3255-3276.Google Scholar
  56. Rancitelli L.A., Perkins R.W., Felix W.D., and Wogman N.A. (1971) Erosion and mixing of the lunar surface from cosmogenic and primordial radionuclide measurements in Apollo 12 lunar samples. Proc. Lunar Sci. Conf. 2nd, p. 1757–1772.Google Scholar
  57. Schneider E. and Hörz F. (1974) Microcrater populations on Apollo 17 rocks. Icarus 22, 459–473.Google Scholar
  58. Schneider E., Storzer D., Mehl B., Hartung J.B., Fechtig H., and Gentner W. (1973) Microcraters on Apollo 15 and 16 samples and corresponding dust fluxes. Proc. Lunar Sci. Conf. 4th, p. 3277–3290.Google Scholar
  59. Shoemaker E.M. (1971) Origin of fragmental debris on the lunar surface and the history of bombardment of the moon. Instituto de Investigaciones Geologicas de la Diputacion Provincial, v. XXV, Universidad de Barcelona.Google Scholar
  60. Smith D., Adams N.G., and Khan H.A. (1974) Flux and composition of micrometeoroids in the diameter range 1‐10pm. Nature 252, 101–106.Google Scholar
  61. Storzer D. and Wagner G.A. (1969) Correction of thermally lowered fission track ages of tektites. Earth Planet. Sci. Lett. 5, 463–468.Google Scholar
  62. Wahlen M., Honda M., Imamura M., Fruchter J.S., Finkel R.C., Kohl C.P., Arnold J.R., and Reedy R.C. (1972)-Cosmogenic nuclides in football-sized rocks. Proc. Lunar Sci. Conf. 3rd, p. 1719-1732.Google Scholar
  63. Walker R. and Yuhas D. (1973) Cosmic ray track production rates in lunar materials. Proc. Lunar Sci. Conf. 4th, p. 2379–2389.Google Scholar
  64. Zook H.A. and Berg O.E. (1975) A source for hypervelocity cosmic dust particles. Planet. Space Sci. 23(1), 183–203.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Jack B. Hartung
    • 1
  1. 1.Department of Earth and Space SciencesState University of New York at Stony BrookStony BrookUSA

Personalised recommendations