Flux of hyperbolic meteoroids

  • J. S. Dohmanyi
2 In Situ Measurements of Interplanetary Dust 2.1 Measurements from Satellites and Space Probes
Part of the Lecture Notes in Physics book series (LNP, volume 48)


The production of hyperbolic meteoroids by inelastic collisions between meteoroids is estimated. It is found that, under reasonable assumptions, the calculated flux of hyperbolic meteoroids agrees with satellite data and with lunar microcrater distributions. We have therefore obtained independent theoretical support for Zook and Berg's (1975) β-meteoroid hypothesis and for Fechtig et al. (1974) suggestion that submicron lunar microcraters are produced by ß-meteoroids.


Impact Speed Interplanetary Dust Crater Diameter Hyperbolic Orbit Parent Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, O.E., and Grün, E. (1973), “Evidence of hyperbolic cosmic dust particles”, Space Research XIII, pp. 1046–1055.Google Scholar
  2. Brownlee, D.E., Hörz, F., Hartung, J.B., and Gault, D.E. (1972), “Micrometeoroid craters smaller than 100 microns”, in: The Apollo 15 Lunar Samples, pp. 407-409. The Lunar Science Institute, Houston.Google Scholar
  3. Dohnanyi, JS. (1969), “Collisional model of asteroids and their debris”, J. Geophys. Res. 74, 2531–2554.Google Scholar
  4. Dohnanyi, J.S. (1970), “On the origin and distribution of meteoroids”, J. Geophys. Res. 75, 3468–3493.Google Scholar
  5. Dohnanyi, J.S. (1972), “Interplanetary objects in review: statistics of their masses and dynamics”, Icarus 17, 1–48.Google Scholar
  6. Dohnanyi, J.S. (1973), “Current evolution of meteoroids”, Proc. of the IAU Colloquium No. 13, NASA SP-319, pp. 363–374.Google Scholar
  7. Eichhorn, G. (1976), “Impact” light flash studies: Temperature, ejecta and vaporization”, this Volume.Google Scholar
  8. Fechtig, H. (1976), “In situ records of interplanetary dust particles-methods and results”, this Volume.Google Scholar
  9. Fechtig, H., Gentner, W., Hartung, J.B., Nagel, K., Neukum, G., Schneider, E., and Storzer, D. (1975),-“Microcraters on lunar samples”, Proc. of the Soviet-American Conference on Cosmo chemistry, Pergamon Press (in press).Google Scholar
  10. Fechtig, H., Hartung, J.B., Nagel, K., Neukum, G., and Storzer, D. (1974), “Microcrater Studies, Derived Meteoroid Fluxes and Comparison with Satellite-Borne Experiments”, Lunar Science V, Abstract Vol. pp. 22–224 Proc. Fifth Lunar Sci. Conf. Geochim. Cosmochim. Acta Suppl. 5, Vol. 3, 4, pp. 2463–2474.Google Scholar
  11. Gault, D.E.,-Shoemaker, E.M., and Moore, H.J. (1963), “Spray ejected from the lunar surface by meteoroid impact”, NASA Rept. TND-1767.Google Scholar
  12. Grün, E., Berg, O.E., and Dohnanyi, J.S. (1973), “Reliability of cosmic dust data from Pioneer 8 and 9”, Space Research XIII, pp. 1057–1062.Google Scholar
  13. Hartung, J.B., Hörz, F., and Gault, D.E. (1972), “Lunar microcraters and interplanetary dust”, Proc. Third Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3, Vol. 3, pp. 2735–2753. MIT Press.Google Scholar
  14. Harwit, M. (1963), “Origins of the zodiacal dust cloud”, J. Geophys. Res. 68, 2171–2180.Google Scholar
  15. Hörz, F., Hartung, J.B., and Gault, D.E. (1971), “Micrometeorite craters and lunar rock surfaces”, J. Geophys. Res. 76, 5770–5798.Google Scholar
  16. Hoffmann, H.J., Fechtig, H., Grün, E., and Kissel, J. (1975), “First results of the micrometeoroid experiment S-215 on the HEOS 2 satellite”, Planet. Space Sci. 23, 215–224.Google Scholar
  17. Mandeville, J.C., and Vedder, J.F. (1971), “Microcraters formed in glass by low density projectiles”, Earth Planet. Sci. Letters 11, 297.Google Scholar
  18. McCrosky, R.E., and Posen, A. (1961), “Optical elements of photographic meteors”, Smithson. Contrib. Astrophys. 4, 15–84.Google Scholar
  19. McDonnell, J.A.M., Berg, O.E., and Richardson, F.F. (1975), “Spatial and time variations of the interplanetary microparticle flux analysed from deep space probes Pioneers 8 and 9”, Planet. Space Sci. 23, 205–214.Google Scholar
  20. Neukum, G. (1971), “Untersuchungen Über Einschlagskrater auf dem Mond”, Ph.D. Thesis, Universität Heidelberg.Google Scholar
  21. Neukum, G., Schneider, E., Mehl, A., Storzer, D., Wagner, G.A., Fechtig, H., and Bloch, M.R. (1972), “Lunar craters and exposure ages derived from crater statistics and solar flare tracks”, Proc. Third Lunar Sci. Conf, Geochim. Cosmochim. Acta, Suppl. 3, Vol. 3, pp. 2793–2810. MIT Press..Google Scholar
  22. Schneider, E., Storzer, D., Hartung, J.B., Fechtig, H., and Gentner, W. (1973), “Microcraters on Apollo 15 and 16 samples and corresponding Cosmic Dust Fluxes”, Proc. Fourth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 4, Vol. 3, pp. 3277–3290.Google Scholar
  23. Southworth, R.B., and Sekanina, Z. (1973), “Physical and dynamical studies of meteor”, NASA CR-2316.Google Scholar
  24. Whipple, F.L. (1976), “Sources of interplanetary dust”, this Volume.Google Scholar
  25. Zook, H.A. (1975), “Hyperbolic cosmic dust: its origin and its astrophysical significance”, Planet. Space Sci. 23, 1391–1397.Google Scholar
  26. Zook, H.A., and Berg, O.E. (1975), “A source for hyperbolic cosmic dust particles”, Planet. Space Sci. 23, 183–203.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. S. Dohmanyi
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations