Advertisement

On evaluating recursion

  • Peter Raulefs
Logische Systeme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 34)

Abstract

Outermost and innermost interpreters, employing what is usually less precisely called call-by-name and call-by-value evaluation, are shown to be equivalent in the sense that both can mutually simulate each other. Under a correctness criterion which is independent of any other evaluation rule, outermost interpreters implement recursion correctly but innermost interpreters do not.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DE BAKKER 75]
    J.W. de Bakker. Least Fixed Points Revisited. Proc. Symp. on λ-Calculus and Computer Science Theory, CNR Rome, March 1975.Google Scholar
  2. [CADIOU 72]
    J.M. Cadiou. Recursive definitions of partial functions and their computations. Ph.D.-thesis. Computer Science Dept., Stanford University. Memo AIM-163/CS-266-72 (1972).Google Scholar
  3. [CADIOU-MANNA 72]
    J.M. Cadiou and Z. Manna. Recursive definitions of partial functions and their computations. Proc. ACM Conf. on Proving Assertions about Programs, Las Cruces, 1972.Google Scholar
  4. [CURRY-FEYS 74]
    H.B. Curry, R. Feys, and W. Craig. Combinatory Logic, vol. 1, Norht-Holland Publ. Co., 3rd printing 1974.Google Scholar
  5. [FISCHER 72]
    M.J. Fischer. Lambda calculus schemata. Proc. ACM Conf. on Proving Assertions about Programs, Las Cruces, 1972.Google Scholar
  6. [MANNA-VUILLEMIN 72]
    Z. Manna and J. Vuillemin. Fixpoint approach to the theory of computation. CACM: 15 (1972) 528–536Google Scholar
  7. [RAULEFS 75-1]
    P. Raulefs. The overtyped lambda-calculus. Tech. Report No. 2/75, Institut für Informatik I, Univ. Karlsruhe, Feb. 1975.Google Scholar
  8. [RAULEFS 75-2]
    P. Raulefs. Standard models of the overtyped lambda-calculus. Tech. Report No. 3/75, Institut für Informatik I, Univ. Karlsruhe, March 1975.Google Scholar
  9. [DE ROEVER 74]
    W.P. de Roever. Recursion and parameter mechanisms: an axiomatic approach. In Proc. 2nd Coll. on Automata, Languages, and Programming, Saarbrücken 1974. Springer Lecture Notes in Computer Science, vol. 14 (1973) 34–65.Google Scholar
  10. [STRACHEY-WADSWORTH 74]
    C. Strachey, and C.P. Wadsworth. Continuations A mathematical semantics for handling full jumps. Oxford Univ. Computing Lab. Tech. Monograph PRG-11 (1974).Google Scholar
  11. [VUILLEMIN 73]
    J. Vuillemin. Correct and optimal implementation of recursion in a simple programming language. In Proc. Fifth Annual ACM Symposium on Theory of Computing, Austin, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Peter Raulefs
    • 1
  1. 1.Institut für Informatik IUniversität KarlsruheKarlsruhe 1B.R.D.

Personalised recommendations