Polynomial separation of ternary functions

  • Claudio Moraga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 34)


It is shown that quasi-threshold realization of a set of ternary functions is possible, when separating surfaces in the hypercube of a ternary function are allowed to be of second degree. Only one constraint is required to obtain simple physical realizations of these "Polynomial Separable" functions, which considerably outnumber the Linear Separable functions. It is shown that monotonic-transformability is a necessary condition for a ternary function to be polynomial separable. There are 2967 2-place and over 1.5 million 3-place ternary polynomial separable functions. Identifiers and realization parameters have been listed for the 2-place case and for a subset of the 3-place case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. (1).
    Moraga C.: "Mehrwertige Schaltalgebra", Class-notes, Special Vorlesung, Universität Dortmund WS 74/75, (Refs. chapter 6).Google Scholar
  2. (2).
    Merrill R.D.: "Ternary Threshold Logic" in: Research on Automatic Computer Electronics, Lockheed Missiles and Space Co. Palo Alto, Calif., Rpt. Nr RTD-TDR-4173, Vol II, pp B–187–230, (Oct. 1963)Google Scholar
  3. (3).
    Moraga C.: "Ternary Threshold Functions: 2-place case", Report EOSD 7105, Universidad Santa María, Chile, (1971)Google Scholar
  4. (4).
    Aibara T. and Akagi M.: "Enumeration of Ternary Threshold Functions of Three Variables", IEEE Tr. C-21, 402–407, (1971)Google Scholar
  5. (5).
    Nazarala J. "A study on Ternary Threshold Logic", E.E. Thesis, Universidad de Chile, (1973)Google Scholar
  6. (6).
    Nazarala J. and Moraga C.: "Minimal Realization of Ternary Threshold Functions", Proc. 1974 Internat. Symposium on Multi-valued Logic, W.Va., USA, 347–358, (May 1974)Google Scholar
  7. (7).
    Nazarala J. and Moraga C.: "Bilineal Separation of Ternary Functions", 1st Chilean Symposium on E.E., Santiago, Chile, (Aug. 1974)Google Scholar
  8. (8).
    Nazarala J. and Moraga C.: "Bilineal Separability of Ternary Functions", 1975 Internat. Symposium on Multi-valued Logic, Indiana, USA, (May 1975)Google Scholar
  9. (9).
    Gutiérrez J.: "Realization of Ternary Functions by means of Multithreshold Periodic Threshold gates", E.E. Thesis, Universidad Santa María, Chile, (1972)Google Scholar
  10. (10).
    Gutiérrez J. and Moraga C.: "Multithreshold Periodic Ternary Threshold Logic", Proc. 1974 Internat. Symposium on Multi-Valued Logic, W.Va., USA, 413–422, (may 1974)Google Scholar
  11. (11).
    Moraga C.: Research in progress.Google Scholar
  12. (12).
    Moraga C.: "Ternary Threshold Logic with Polynomial Separability" Report EOSD 7104, Universidad Santa María, Chile, (1971)Google Scholar
  13. (13).
    Moraga C.: "Non-Linear Ternary Threshold Logic", Proc. 1972 Internat. Symposium on the Theory and Applications of Multiple-valued Logic Design, NY, USA, 65–74, (May 1972)Google Scholar
  14. (14).
    Vranesic Z. and Smith K.C.: "Engineering Aspects of Multiple-Valued Logic Systems", IEEE CS Computer, 7, (9), 34–41, (Sept. 1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Claudio Moraga

There are no affiliations available

Personalised recommendations