Recent developments of finite-difference approximations for boundary-layer equations

  • E. Krause
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 41)


Finite-difference solutions for Prandtl's boundary-layer equations are described for steady, two- and three-dimensional laminar and turbulent flows. For three-dimensional flows only boundary sheets are considered and curvature effects in the direction normal to the wall are being neglected. The governing equations are presented in form of a matrix-vector equation. Its numerical stability is discussed for elementary finite-difference molecules. Non-orthogonal coordinates are shown to affect the stability limits for the convective terms. If the momentum equations and/or the energy equation are decoupled by splitting the main part of the differential equations additional conditions must be observed for stable solutions. Finite-difference approximations with truncation error of fourth order are introduced to enable either increased accuracy or shortened calculation times, in particular, for three-dimensional problems. Studies of the behaviour of the overall error of the solution and several applications to realflow situations supplement the general considerations. Finally, a brief discussion is given for second-order closure problems.


Turbulent Boundary Layer Eddy Viscosity Truncation Error Normal Velocity Component Compressible Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Krause, E., Hirschel, E.H., and Kordulla, W., Fourth Order “Mehrstellen”-Integration for Three-Dimensional Turbulent Boundary Layers. AIA-Computational Fluid Dynamics Conference, Palm Springs, Cal., 19–20 July, 1973, Conference Proceedings.Google Scholar
  2. [2]
    Krause, E., Numerical Treatment of Boundary-Layer Problems. AGARD LS 64, 1973, Brussels.Google Scholar
  3. [3]
    Bradshaw, P., Calculation of Three-Dimensional Turbulent Boundary Layers. J. Fluid Mech. (1971), Vol. 46, Part 3, pp. 417–445.Google Scholar
  4. [4]
    Wesseling, P., Lindhout, J.P.F., Three-dimensional incompressible turbulent boundary layers: comparison between calculations and experiments. Paper presented at the EUROMECH Colloauium 33 “Three-dimensional turbulent boundary layers”, 25 to 27 September 1972, Berlin.Google Scholar
  5. [5]
    Nash, J.F., Patel, V.C., Three-Dimensional Turbulent Boundary Layers, SEC Technical Books, 1972.Google Scholar
  6. [6]
    Van den Berg, B., The Law of the Wall in Two-and Three-Dimensional Turbulent Boundary Layers. NLR TR 72111U, 1973.Google Scholar
  7. [7]
    East, L.F., Measurements of the turbulent boundary layer on a slender wing. Paper presented at the EUROMECH Colloquium 33, 1972, Berlin.Google Scholar
  8. [8]
    Fannelop, T.K., A simple finite difference procedure for solving the three-dimensional laminar and turbulent boundary-layer equations. Paper presented at the EUROMECH Colloquium 33, 1972, Berlin.Google Scholar
  9. [9]
    East, Jr., J.L., Pierce, F.J., Explicit Numerical Solution of the Three-Dimensional Incompressible Turbulent Boundary-Layer Equations. AIAA Journal, Vol. 10, No. 9, (1972), pp. 1216–1223.Google Scholar
  10. [10]
    Klinksiek, W.F., and Pierce, F.J., A Finite-Difference Solution of the Two-and Three-Dimensional Incompressible Turbulent Boundary Layer Equations. Transactions of the ASME. Journal of Fluid Engineering Vol. 95, Series 1, No. 3, September 1973.Google Scholar
  11. [11]
    Krause, E., Mehrstellenverfahren zur Integration der Grenzschichtgleichungen, DLR Mitt. 71-13 (1971),5. 109–138.Google Scholar
  12. [12]
    Krause, E., Hirschel, E.H., Kordulla, W., Finite difference solutions for three-dimensional turbulent boundary layers. Paper presented at the EUROMECH Colloquium 33, 1972, Berlin.Google Scholar
  13. [13]
    Hocks, W., Korschelt, D., Küster, H., Peters, N., Arbeitsbericht der Projektgruppe “Turbulente dreidimensionale Grenzschichten”, Teil I: Das numerische Verfahren. Inst. f. Thermo-und Fluiddynamik, Technische Universität Berlin (1972).Google Scholar
  14. [14]
    Krause, E., Hirschel, E.H., Bothmann, Th., Numerische Stabilität dreidimensionaler Grenzschichten, ZAMM Sonderheft 48 (1968), T 205.Google Scholar
  15. [15]
    Krause, E., Hirschel, E.H., Bothmann, Th., Die numerische Integration der Bewegungsgleichungen dreidimensionaler laminarer kompressibler Grenzschichten. Fachtagung Aerodynamik, Berlin 1968, DGLR-Fachbuchreihe Bd. 3, Braunschweig (1969).Google Scholar
  16. [16]
    Krause, E., Comment on Solution of a Three-Dimensional Boundary-Layer Flow with Separation, AIAA Journal, Vol. 7, p. 575.Google Scholar
  17. [17]
    Richtmyer, R.D., Morton, K.W., Difference Methods for Initial Value Problems, Interscience Publishers Inc., New York (1967), Second Edition.Google Scholar
  18. [18]
    Kordulla, W., An Improved Calculation Method for Compressible Turbulent Boundary Layers. Paper presented at the EUROMECH 43 Colloquium “ Heat transfer in turbulent boundary layer with variable fluid properties”, 14 to 16 May 1973, Göttingen.Google Scholar
  19. [19]
    Sells, C.C.L., Two-dimensional Laminar Compressible Boundary Layer Programme for a Perfect Gas. RAE TR 66243, Aug. 1966.Google Scholar
  20. [20]
    Keller, H.B., Cebeci, T., Accurate Numerical Methods for Boundary Layer Flows, I. Two-dimensional Laminar Flows. Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, 1970, Berkeley, Lecture Notes in Physics No. 8, Springer, 1971.Google Scholar
  21. [21]
    Collatz, L., The numerical treatment of differential equations. Springer, 1960, Vol. 60, 2nd printing of 3rd edition 1966.Google Scholar
  22. [22]
    Falk, S., Eine Variante zum Differenzenverfahren. ZAMM Vol. 45, 1965, Sonderheft T 32.Google Scholar
  23. [23]
    Wirz, H.J., Eine Erweiterung des Verfahrens der Zwischenschritte auf allgemeinere parabolische und elliptische Differentialgleichungen. ZAMM 52, 1972, S. 329–336.Google Scholar
  24. [24]
    Kordulla, W., de Helium-und Wasserstoff-Wandstrahlen in atmosphärischen Überschallgrenzschichten. Doctoral Dissertation. Aerodynamisches Institut, Aachen, 1974Google Scholar
  25. [25]
    Krause, E., Numerical Solution of the Boundary Layer Equations, AIAA Journal. Vol. 5 No. 7 (1967) pp. 1231–1237.Google Scholar
  26. [26]
    Rotta, J.C., Recent Attempts to Develop a Generally Applicable Calculation Method for Turbulent Shear Layers. AGARD Conference Proceedings No. 93 on Turbulent Shear Flows North Atlantic Treaty Organisation. September 1971.Google Scholar
  27. [27]
    Bradshaw, P., J. Fluid Mech. (1971), Vol. 46, part 3 pp. 1231–1237Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • E. Krause
    • 1
  1. 1.Aerodynamisches Institut Rheinisch-Westfälisch Technische HochschuleAachenGermany

Personalised recommendations