Advertisement

Test d'isomorphie d'hypergraphes planaires

  • Max Fontet
Mittwochvormittag Hauptvortrag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 33)

Keywords

Planar Graph Polyhedral Surface Combinatorial Graph Proposition Suivante Circuit Contenant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliographie

  1. [1]
    BERGE, C.: Graphes et hypergraphes Dunod 1970.Google Scholar
  2. [2]
    CORI, R.: Un code pour les graphes planaires et ses applications Thèse PARIS 1973.Google Scholar
  3. [3]
    EDMONDS, J.R.: A combinatorial representation for oriented polyhedral surfaces M.A. Thesis University of Maryland (U.S.A.) 1960.Google Scholar
  4. [4]
    FONTET, M.: Un résultat en théorie des groupes de permutations et son application au calcul effectif du groupe d'automorphismes d'un automate fini dans 2nd Colloquium on Automata, languages and programming Saarbrücken (1974) 335–341.Google Scholar
  5. [5]
    FONTET, M.: Une caractérisation des hypercartes planaires (en préparation)Google Scholar
  6. [6]
    HOPCROFT, J.E., R.E. TARJAN: A V log V algorithm for isomorphism of triconnected planar graphs J C S S 7 323–331 (1973)Google Scholar
  7. [7]
    HOPCROFT, J.E., WONG: Linear time algorithm for isomorphism of planar graphs (Preliminary report) 6th ACM SIGACT (1974)Google Scholar
  8. [8]
    JACQUES, A.: Sur le genre d'une paire de substitutions, C.R. Acad. Sci. PARIS 267 625–627 (1968)Google Scholar
  9. [9]
    JACQUES, A.: Constellations et propriétés algébriques des graphes topologiques Thèse 3ème cycle PARIS 1969.Google Scholar
  10. [10]
    KARP, R.M.: Reducibility among combinatorial problems in Complexity of computer computations Plenum Press IBM Symposium (1972)Google Scholar
  11. [11]
    MAC LANE, S.: A structural characterisation of planar combinatorial graphs Duke Math. 3 460–472 (1937)Google Scholar
  12. [12]
    PENAUD, J.G.: Quelques propriétés des hypergraphes planaires — Thèse Docteur — Ingénieur Bordeaux 1974.Google Scholar
  13. [13]
    PERRIN, D., PERROT, J-F.: Congruences et automorphismes des Automates finis Acta Informatica 1 159–172 (1971)Google Scholar
  14. [14]
    WALSH, R.S.: Hypermaps versus bipartite maps, J. Comb. Theory (B) 18 155–163 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Max Fontet
    • 1
  1. 1.Institut de ProgrammationUniversite Pierre Et Marie CurieParis

Personalised recommendations