Advertisement

Theory versus theory as a test of the effective interaction

  • L. Zamick
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 40)

Abstract

Using density dependent interactions of the Skyrme type, we calculate the energies of the giant isoscalar monopole and quadrupole states in T.D.A. and R.P.A. Then we use a collective model involving the Inglis cranking formula. Very close agreement is obtained. The simplicity of using oscillator wave functions with Skyrme forces, especially for constructing the equation of state, is noted. Then the isoscalar effective charges are calculated in the R.P.A. and compared with the Hartree Fock calculations. There are significant differences, and attempts to make the results converge, by making the deformation parameters for the valence nucleon different from those of the core, are discussed. Most of the calculations were done by Michaela Golin.

Keywords

Effective Charge Finite Range Skyrme Force Trial Wave Function Single Particle Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The collected works of B. R. Barrett.Google Scholar
  2. 2.
    J. M. Araujo, Vibrations of Spherical Nuclei in Nuclear Reactions 2, P. M. Endt and P. B. Smith, Ed. North-Holland, 1962).Google Scholar
  3. 3.
    A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd. 27 #16, (1953); A. Bohr and B. R. Mottelson, Nuclear Theory 11, to be published;B. R. Mottelson, The Many Body Problem, Les Hauches (John Wiley and Sons, Inc., New York, 1958).Google Scholar
  4. 4.
    D. R. Inglis, Phys. Rev. 96, 1059 (1954); D. R. Inglis, Phys. Rev. 97, 701 (1955).Google Scholar
  5. 5.
    T. H. R. Skyrme, Phil. Mag. 1, 1043 and Nucl. Phys. 9, 615 (1959); D.Vautherin and D. M. Brink, Phys. Lett. 32B, 149 (1970); D. Vautherin and D. M. Brink, Phys. Rev. C5,626 (1972).Google Scholar
  6. 6.
    S. A. Moszkowski, Phys. Rev. C2, 402 (1972); J. W. Ehlers and S. A. Moszkowski, Phys. Rev. C6, 217 (1972).Google Scholar
  7. 7.
    R. W. Sharp and L. Zamick, Nucl. Phys. A208, 130 (1973);R. W. Sharp and L. Zamick, Nucl. Phys. A223, 333 (1974).Google Scholar
  8. 8.
    G. F. Bertsch and S. F. Tsai, to be published in Physics Reports.Google Scholar
  9. 9.
    S. Krewald and J. Speth, Phys. Lett. 52B, 295 (1974).Google Scholar
  10. 10.
    I. Hamamoto, Proc. Conf. on Nuclear Structure Studies Using Electron Scattering, Tohoku University, Sendai, Japan (1972) p.205.Google Scholar
  11. 11.
    T. Suzuki, Nucl. Phys. A217, 182 (1973).Google Scholar
  12. 12.
    L. Zamick, Phys. Lett. 45B, 313 (1973).Google Scholar
  13. 13.
    M. Golin and L. Zamick, Collective Models of Giant States with Density-Dependent Interactions, to be published.Google Scholar
  14. 14.
    H. Flocard and D. Vautherin, Phys. Lett. 55B, 259 (1975).Google Scholar
  15. 15.
    Y. M. Engel,D. M.Brink, K. Goeke, S. J. Krieger, and D. Vautherin, preprint.Google Scholar
  16. 16.
    G. Bertsch, Nuclear Hydrodynamics, to be published.Google Scholar
  17. 17.
    M. Baranger, European Conference on Nuclear Physics, Aix-en-Provence, 1972. Journal de Physique 33, C6-61 (1972).Google Scholar
  18. 18.
    B. Giraud and B. Grammaticos, Microscopic Analysis of Collective Motion, preprint.Google Scholar
  19. 19.
    S. Siegel and L. Zamick, Nucl. Phys. A145, 89 (1970).Google Scholar
  20. 20.
    M. Harvey and F. C. Khanna, Nuclear Spectroscopy and Reactions, Part D, J. Cerney, Ed. (Academic Press, 197Google Scholar
  21. 21.
    G. E. Brown, Facets of Physics, D. A. Bromley and V. Hughes, Ed. (Academic Press, New York, 1970) p. 141.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • L. Zamick
    • 1
  1. 1.Department of PhysicsRutgers UniversityNew BrunswickNew Jersey

Personalised recommendations