Modal Logic Propositional Logic Propositional Variable Axiom Schema Classical Propositional Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BACHMANN, H.: Transfinite Zahlen. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  2. 2.
    DE BAKKER. J.W. and DE ROEVER, W. P.: A Calculus for Recursive Program Schemes. In: NIVAT, M. (ed.): Automata, Languages and Programming. Amsterdam-London-New York: North-Holland/American Elsevier 1973Google Scholar
  3. 3.
    BLIKLE, A.: An extended approach to mathematical analysis of programs. CC PAS Report 169, Warsaw 1974Google Scholar
  4. 4.
    BURSTALL, R.M.: Program Proving as Hand Simulation with a Little Induction. Information Processing 74, 308–312. Amsterdam: North-Holland 1974Google Scholar
  5. 5.
    ENGELER, E.: Algorithmic Properties of Structures. Math. Systems Theory 1, 183–195 (1967)CrossRefGoogle Scholar
  6. 6.
    HAYES, P.J.: Robotologic. In: MELTZER, B., MICHIE, D. (ed.): Machine Intelligence 5. Edinburgh University Press 1969Google Scholar
  7. 7.
    HOARE, C.A.R.: An Axiomatic Basis for Computer Programming. CACM 12, 576–580 (1969)Google Scholar
  8. 8.
    KRIPKE, S.A.: Semantical Analysis of Modal Logic I. Zeitschr. für mathem. Logik und Grundl. der Mathematik 9, 67–96 (1963)Google Scholar
  9. 9.
    KRÖGER, F.: An Extension of Propositional Logic by Algorithmic Concepts. Abteilung Mathematik der TUM, Bericht Nr. 7419Google Scholar
  10. 10.
    SALWICKI, A.: Formalized Algorithmic Languages. Bull. Acad. Polon. Sci, Ser. Math. Astronom. Phys. 18, 227–232 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Fred Kröger
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations