Advertisement

On some models of computability of boolean functions

  • I. D. Zaslavskii
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 32)

Keywords

Boolean Function Recursive Function Conjunctive Normal Form Disjunctive Normal Form Switching Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von-Neumann J., Theory of self-reproducing Automata, Urbana & London (1966).Google Scholar
  2. 2.
    Колмогоров А.Н., О трех подходах к определению понятия "количество информации", Проблемы передачи информации, том I, вып. I, 3–7 (1965).Google Scholar
  3. 3.
    Марков А.А. qtОб алгорифмах, вычисляющих булевы функции, Доклады АН СССР, том 157, вып. I, 262–264 (1964).Google Scholar
  4. 4.
    Яблонский С.В., О трудностях синтеза минимальных контактных схем, "Проблемы кибернетики", вып. 2, 75–121 (1959).Google Scholar
  5. 5.
    Лупанов О.Б., О методах получения оценок сложности вычисления индивидуальных функций, "Дискретный анализ", вып. 25, 3–18 (1974).Google Scholar
  6. 6.
    Meyer A., The Inherent Computational Complexity of Theories of Ordered Sets; A Brief Survey, Massachusetts Institute of Technology, 1–10 (1974).Google Scholar
  7. 7.
    Ehrenfeucht A., Practical decidability, Report CU-CS-008-72, Dept. of Computer Science, Univ. of Colorado (1972).Google Scholar
  8. 8.
    Заславский И.Д., О реализации булевых функций с помощью автоматов, Доклады АН Армянской ССР, том ХIУII, No 3, 129–133 (1968).Google Scholar
  9. 9.
    Заславский И.Д., О неразрешимости массовых проблем в конечных предметных областях, II Всесоюзн.конфер. по математической логике (Тезисы кратких сообщений), 17, Москва (1972).Google Scholar
  10. 10.
    Hunt E.B., Marin J., Stone P.J., Experiments in induction, Academic Press, New York & London (1966).Google Scholar
  11. 11.
    Калужнин Л.А., Об алгоритмизации математических задач, "Проблемы кибернетики", вып. 2, 51–67 (1959).Google Scholar
  12. 12.
    Заславский И.Д., Граф-схемы с памятью, Труды матем.инст.им.В.А. Стеклова, том L XXII, 99–192 (1964).Google Scholar
  13. 13.
    Shannon C.E., The synthesis of two-terminal switching circuits, Bell Syst. Techn. Journ., 41–98 (1949).Google Scholar
  14. 14.
    Kalmar L., Egyszerü példa eldönthetetlen aritmetikai problémára, Mathematikai és Fizikai Lapok 50, 1–23 (1943).Google Scholar
  15. 15.
    Grzegorczyk A., Some classes of recursive functions, Rozpr. mat., Warsaw, 4, 1–46 (1953).Google Scholar
  16. 16.
    Kleene S.C., Introduction to metamathematics, New York — Toronto (1952).Google Scholar
  17. 17.
    Karp R., Reducibility among combinatorial problems, "Complexity of Computer Computations", R.E. Miller and J.W. Thatcher, ed., Plenum Press, New York, 85–104 (1972).Google Scholar
  18. 18.
    Левин А.А., Об отношении сложностей Д.Н.Ф. функции к сложности Д.Н.Ф. её отрицания. "Дискретный анализ", вып. 16, 77–81 (1970).Google Scholar
  19. 19.
    Офман Ю.П., Универсальный автомат, Труды Московского матем. общества, том 14, 186–199 (1965).Google Scholar

Translation of Russian references

  1. 2.
    Kolmogorov, A.N., On three approaches to definition of the concept "amount of information". Problemy pered. inform. 1 (1965).Google Scholar
  2. 3.
    Markov, A.A., On algorithms computing Boolean functions. Dokl. Akad. nauk USSR, 157 (1964), 1, 262–264.Google Scholar
  3. 4.
    Jablonskii, S.V.}, On hardships of synthesis of minimal switching circuits. Problemy kibernetiki, Vol. 2 (1959), 75–121.Google Scholar
  4. 5.
    Lupanov, O.B., On methods of obtaining complexity bounds for computing particular functions. Diskretnyi analiz, 25 (1974), 3–18.Google Scholar
  5. 8.
    Zaslavskii, I.D.}, On realization of Boolean functions by means of automata. Dokl. Akad. nauk Arm. SSR, 47, (1968), No. 3, 129–133.Google Scholar
  6. 9.
    Zaslavskii, I.D., On unsolvability of mass problems in finite object domains. II. Vses. konf. po mat. logike, Moscow, 1972.Google Scholar
  7. 11.
    Kaluzhnin, L.A., On algorithmization of mathematical problems. Problemy kibernetiki 2 (1959), 51–67.Google Scholar
  8. 12.
    Zaslavkii, I.D.}, Graph-schemes with memory. Trudy mat. inst. im. V.A. Steklova, 72 (1964), 99–192.Google Scholar
  9. 18.
    Levin, A.A., On the relation of the complexity of the disjunctive normal form of a function to the disjunctive normal form of its negation. Diskretnyi analiz, 16 (1970), 77–81.Google Scholar
  10. 19.
    Ofman, Ju.P., Universal automaton. Trudy Mosk. mat. obsh. 14 (1965), 186–199.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • I. D. Zaslavskii
    • 1
  1. 1.Computing Center, Academy of Sciences of Armenian SSRYerevanUSSR

Personalised recommendations