On some problems concerning Pawlak's machines

  • Miroslav Novotný
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 32)


Partial Mapping Unary Algebra Infinite Sequence Unary Relation Free Monoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlak, Z., Maszyny programowane. Algorytmy 10 (1969), 7–22.Google Scholar
  2. 2.
    Bartol, W., Programy dynamiczne obliczeń. Państwowe wydawnictwo naukowe, Warszawa 1974.Google Scholar
  3. 3.
    Novotný, M., O jednom problému z teorie zobrazení. Spisy vyd. Přír. Fak. Univ. Masaryk Brno, No 344 (1953), 53–64.Google Scholar
  4. 4.
    Novotný, M., Über Abbildungen von Mengen. Pac. J. Math. 13 (1963), 1347–1359.Google Scholar
  5. 5.
    Kopeček, O., Homomorphisms of machines. To appear.Google Scholar
  6. 6.
    Kopeček, O., The category of connected partial unary algebras. To appear.Google Scholar
  7. 7.
    Novotný, M., Characterization of the category of connected partial unary algebras. To appear.Google Scholar
  8. 8.
    Rabin, M.O., and Scott, D., Finite automata and their decision problems. IBM Systems J. 3 (1959), 115–125.Google Scholar
  9. 9.
    Ginsburg, S., The Mathematical Theory of Context-Free Languages, Mc Graw-Hill, New York-London, 1966.Google Scholar
  10. 10.
    Novotný, M., Sets constructed by acceptors. Information and Control 26 (1974), 116–133.CrossRefGoogle Scholar
  11. 11.
    Kwasowiec, W., Generable sets. Information and Control 17 (1970), 257–264.CrossRefGoogle Scholar
  12. 12.
    Mezník, I., G-machines and generable sets. Information and Control 20 (1972), 499–509.CrossRefGoogle Scholar
  13. 13.
    Grodzki, Z., The k-machines. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1970), 399–403.Google Scholar
  14. 14.
    Mezník, I., On structural properties of generable languages. These Proceedings p. 320–325.Google Scholar
  15. 15.
    Karásek, J., Sets of sequences constructed by nondeterministic k-machines and deterministic k-machines. To appear.Google Scholar
  16. 16.
    Karásek, J., Induced algebras. Arch. Math. (Brno) 6 (1970), 71–87.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Miroslav Novotný
    • 1
  1. 1.Mathematical Institute of the Czechoslovak Academy of Sciences, Branch BrnoBrno

Personalised recommendations