Advertisement

Keywords

Inference Rule Relevant Question Predicate Calculus Theoretical Statement Unary Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Cleave, The notion of logical consequence in the logic with inexact predicates, Zeitschrift für Math. Logik und Grundlagen der Mathematik 20 (1974), 307–324.Google Scholar
  2. 2.
    K. Čuda, Contributions to the theory of semisets III, Ibid. 19 (1973), 399–406.Google Scholar
  3. 3.
    J. Flum, First order logic and its extensions, Notes for the Course in Model Theory, Kiel 1974.Google Scholar
  4. 4.
    P. Hájek, Problém obecného pojetí metody GUHA (in Czech), Kybernetika 6 (1968), 505–515.Google Scholar
  5. 5.
    P. Hájek, Automatic listing of important observational statements I, II, III, Ibid. 9 1973, 187–205, 251–271 and 10 1974 95–124.Google Scholar
  6. 6.
    P. Hájek, Some logical problems of automated research. Proceedings of the Symposium on Mathematical Foundations of Computer Science, High Tatras 1973, p. 85–93.Google Scholar
  7. 7.
    P. Hájek, Generalized quantifiers and finite sets. Proceedings of the Autumn School in Set Theory and Hierarchy Theory, Karpacz (Poland) 1974, to appear.Google Scholar
  8. 8.
    P. Hájek, Observationsfuntorenkalküle und die Logik der automatisierten Forschung. Elektronische Informationenverarbeitung und Kybernetik, to appear.Google Scholar
  9. 9.
    P. Hájek, Projective classes of models in observational predicate calculi. Preprint for the 5th International Congress for Logic, Methodology and Philosophy of Science, London (Ontario) 1975.Google Scholar
  10. 10.
    P. Hájek, Contributions to the theory of semisets I, Zeitschrift für Math. Logik und Grundlagen der Mathematik 18 1972, 241–248.Google Scholar
  11. 11.
    P. Hájek, Why semisets? Commentationes Math. Univ. Caroline 14 1973, 397–420.Google Scholar
  12. 12.
    P. Hájek, I. Havel and M. Chytil, The GUHA method of automatic hypotheses determination. Computing 1 (1966), 293–308.Google Scholar
  13. 13.
    P. Hájek and T. Havránek, A logic of automated discovery. Monograph in preparation.Google Scholar
  14. 14.
    T. Havránek, A class of automatic methods of data processing; an application to searching of regression models. Proceedings of the European Meeting of Statisticians and the 7th Prague international Conference in Information Theory, to appear.Google Scholar
  15. 15.
    T. Havránek, Statistical quantifiers in observational calculi: an application in GUHA methods. Theory and Decision 3 (1975), to appear.Google Scholar
  16. 16.
    T. Havránek, this volume, pp. 258–265.Google Scholar
  17. 17.
    D. S. Johnson, P. Gécs and L. Lovász, Pseudoelementary classes of finite structures and polynomial completeness, to appear.Google Scholar
  18. 18.
    R. M. Karp, Reducibility among combinatory problems. Complexity of Computer Computations, Plenum Press 1972, p. 85–103.Google Scholar
  19. 19.
    R. Kowalski, Logic for problem solving. Memo No. 75, Department of Computational Logic, University of Edinburgh 1974.Google Scholar
  20. 20.
    B. Meltzer, Generation of hypotheses and theories. Nature 225, March 1970, p. 972.Google Scholar
  21. 21.
    G.C. Morgan, Hypothesis generation by machine, Artificial Intelligence 2 (1971), 179–188.Google Scholar
  22. 22.
    G.D. Plotkin, A further note on inductive generalization. Machine Intelligence 6 (1971), 101–124.Google Scholar
  23. 23.
    P. Pudlák, The observational predicate calculus and polynomial complexity. Commentationes Math. Univ. Carolinae 16 (1975), to appear.Google Scholar
  24. 24.
    P. Pudlák, this volume, pp. 358–361.Google Scholar
  25. 25.
    L.H. Tharp, The characterization of monadic logic. Journal of Symbolic Logic 38 (1973), 481–488.Google Scholar
  26. 26.
    P. Vopěnka and P. Hájek, The theory of semisets. North-Holland Publ. Comp. 1972.Google Scholar
  27. 27.
    B.A. Trakhtenbrot, this volume, pp. 125–137.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Petr Hájek
    • 1
  1. 1.Czechoslovak Academy of SciencesMathematical InstitutePrague

Personalised recommendations