Spectral invariants and smooth ergodic theory

  • D. A. Lind
II. Ergodic Theory
Part of the Lecture Notes in Physics book series (LNP, volume 38)


Measure Space Measure Preserve Discrete Spectrum Point Spectrum Geodesic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abraham, R., Foundations of mechanics, Benjamin, New York (1967).Google Scholar
  2. [2]
    Ambrose, W., and Kakutani, S., Structure and continuity of measurable flows, Duke Math. J. 9 (1942) 25–42.Google Scholar
  3. [3]
    Anosov, D. V., and Katok, A. B., New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970) 1–35.Google Scholar
  4. [4]
    Arnold, V. I., and Avez, A., Ergodic problems of classical mechanics, Benjamin, New York, 1958.Google Scholar
  5. [5]
    Avez, A., Spectre discrete des systèmes ergodiques classiques, C. R. Acad. Sci. Paris 264 (1967) 49–52.Google Scholar
  6. [6]
    Billingsley, P., Ergodic theory and information, Wiley, New York, 1965.Google Scholar
  7. [7]
    Bowen, R., Entropy for group automorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971) 401–414.Google Scholar
  8. [8]
    Furstenberg, H., Strict ergodicity and transformations of the torus, Amer. Jour. Math. 83 (1961) 573–601.Google Scholar
  9. [9]
    Halmos, P. R., Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. Japan, Tokyo (1959).Google Scholar
  10. [10]
    Katznelson, Y., Ergodic automorphism of Tn are Bernoulli, Israel Math. Jour. 10 (1971), 186–195.Google Scholar
  11. [11]
    Kolmogorov, A. N., On dynamical systems with an integral invariant on the torus, Dokl. Akad. Nauk SSSR (N.S.) 93 (1953) 763–766 (in Russian).Google Scholar
  12. [12]
    Kolmogorov, A. N., General theory of dynamical systems and classical mechanics, Proc. 1954 International Congress Math., North Holland: Amsterdam, 1957, pp. 315–333. (Russian; an English translation appears in Appendix D of [1]).Google Scholar
  13. [13]
    Koopman, B. O., Hamiltonian systems and transformations in Hilbert spaces, Proc. Nat. Acad. Sci. 17 (1931) 315–318.Google Scholar
  14. [14]
    Kouchnirenko, A. G., An estimate from above for the entropy of a classical system, Dokl. Akad. Nauk SSSR 161 (1965) 37–38.Google Scholar
  15. [15]
    von Neumann, J., Zur Operatorenmethode in der klassichen Mechanik, Ann. of Math. 33 (1932) 587–642.Google Scholar
  16. [16]
    Ornstein, D., and Weiss, B., Geodesic flows are Bernoullian, Israel J. Math. 14 (1973) 184–198.Google Scholar
  17. [17]
    Rohlin, V. A., On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., Ser. 1, Vol. 10, 1–54.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. A. Lind
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations