The laser: A reversible quantum dynamical system with irreversible classical macroscopic motion

  • Klaus Hepp
  • Elliott H. Lieb
I. Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 38)


Electron Number Gibbs State Rotate Wave Approximation Photon Mode Fermion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Kato, “Perturbation Theory for Linear Operators,” Springer, Berlin, 1966.Google Scholar
  2. [2]
    H. Haken, “Handbuch der Physik, Vol. XXV, 2c, Springer, Berlin, 1970.Google Scholar
  3. [3]
    K. Hepp and E. H. Lieb, in: “Constructive Quantum Field Theory,” Erice Lectures 1973, G. Velo and A. S. Wightman Editors, Springer, Berlin, 1973.Google Scholar
  4. [4]
    K. Hepp and E. H. Lieb, Helv. Physica Acta 46, 573, 1973.Google Scholar
  5. [5]
    K. Hepp and E. H. Lieb, Annals of Physics 76, 360, 1973.Google Scholar
  6. [6]
    K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517, 1973.Google Scholar
  7. [7]
    E. H. Lieb, Physica, 73, 226, 1974.Google Scholar
  8. [8]
    D. Ruelle, “Statistical Mechanics,” Benjamin, New York, 1969.Google Scholar
  9. [9]
    A. Einstein, Physik. Zeitschr. 18, 121, 1917.Google Scholar
  10. [10]
    F. T. Arecchi, E. O. Schulz-Dubois, “Laser Handbook,” North-Holland Publ. Co., Amsterdam (1972).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Klaus Hepp
    • 1
  • Elliott H. Lieb
    • 2
  1. 1.Department of PhysicsE. T. H.ZürichSwitzerland
  2. 2.Departments of Mathematics & PhysicsM.I.T.Cambridge

Personalised recommendations