Triple collision in Newtonian gravitational systems

  • Richard McGehee
III. Nonlinear Differential Equations
Part of the Lecture Notes in Physics book series (LNP, volume 38)


Unstable Manifold Stable Manifold Rest Point Central Configuration Triple Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Easton, R., Regularization of vector fields by surgery, J. Differential Equations 10 (1971) 92–99.Google Scholar
  2. [2]
    Easton, R., The Topology of the regularization integral surfaces of the 3-body problem, J. Diff. Eqs. 12 (1972) 361–384.Google Scholar
  3. [3]
    Mather, J., and McGehee, R., Orbits for the collinear four-body problem which become unbounded in finite time, in this work.Google Scholar
  4. [4]
    McGehee, R., Triple Collision in the collinear three-body problem, Invent. Math., 27, (1974) 191–227.Google Scholar
  5. [5]
    Painlevé, P., Lecons sur la théorie analytique des équations differentielles, (Stockholm, 1895), A. Hermann, Paris (1897).Google Scholar
  6. [6]
    Palmore, J., Classifying relative equilibria I, Bull. Amer. Math. Soc. 79, 5 (1973) 904–908.Google Scholar
  7. [7]
    Palmore, J., Classifying relative equilibria II, preprint.Google Scholar
  8. [8]
    Siegel, C., Der Dreierstoss, Ann. Math. 42 (1941) 127–168.Google Scholar
  9. [9]
    Siegel, C., and Moser, J., Lectures on Celeastial Mechanics, Springer Verlag (1971).Google Scholar
  10. [10]
    Sperling, H., On the real singularities of the n-body problem, J. Reine Angew. Math. 245 (1970) 14–50.Google Scholar
  11. [11]
    Sundman, K., Mémoire sur la problème des trois corps, Acta Math. 36 (1912) 105–179.Google Scholar
  12. [12]
    Sundman, K., Nouvelles recherches sur la problème des trois corps, Acta Soc. Sci. Fenn. 35, 9 (1909).Google Scholar
  13. [13]
    von Zeipel, H., Sur les singularités du problème des n corps, Ark. Mat. Astr. Fys. 4, No. 32 (1908).Google Scholar
  14. [14]
    Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton University Press (1941)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Richard McGehee
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis

Personalised recommendations