Finitely many mass points on the line under the influence of an exponential potential -- an integrable system

  • Jürgen Moser
III. Nonlinear Differential Equations
Part of the Lecture Notes in Physics book series (LNP, volume 38)


Rational Function Hamiltonian System Mass Point Inverse Method Toda Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Flaschka, H., The Toda Lattice, I, Phys. Rev. B 9, (1974) 1924–1925.Google Scholar
  2. [2]
    Flaschka, H., The Toda Lattice, II, Prog. of Theor. Phys. 51 (1974) 703–716.Google Scholar
  3. [3]
    Gantmacher, F. R., and Krein, M. G., Oszillationsmatrizen, Oszillationskerne und Kleine Schwingungen Mechanischer Systeme, Akad. Verlag, Berlin (1960). See, Anhang II.Google Scholar
  4. [4]
    Henon, M., to appear in Phys. Rev. B 9, (1974) 1921–1923.Google Scholar
  5. [5]
    Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968) 467–490.Google Scholar
  6. [6]
    Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R.M., Korteweg-de Vries Equation and Generalizations VI, Methods for Exact Solutions, Comm. Pure Appl. Math. 27 (1974) 97–133.Google Scholar
  7. [7]
    Arnold, V. I., and Arez, A., Problèmes Ergodiques de la Mécanique Classique, Gauthiers-Villars, Paris (1967).Google Scholar
  8. [8]
    Toda, M., Wave propagation in anharmonic lattices, Jour. Phys. Soc. Japan 23 (1967) 501–506.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Jürgen Moser
    • 1
  1. 1.Courant Institute of Mathematical SciencesNYU

Personalised recommendations