Einige Anwendungen der Kreisscheibenarithmetik in der Kettenbruchtheorie

  • Peter Henrici
Part of the Lecture Notes in Computer Science book series (LNCS, volume 29)


Truncation Error Estimate Dann Gilt Complex Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. J. Davis: The Schwarz Function and its Applications. Carus Mathematical monograph vol. 17, Mathematical Association of America, 1974.Google Scholar
  2. [2]
    I. Gargantini and P. Henrici: Circular arithmetic and the determination of polynomial zeros. Numer. Math. 18, 305–320 (1972).CrossRefGoogle Scholar
  3. [3]
    P. Henrici: Applied and Computational Complex Analysis. Wiley-Interscience, New York 1974.Google Scholar
  4. [4]
    P. Henrici and P. Pfluger: Truncation error estimates for Stieltjes fractions. Numer. Math. 9, 120–138 (1966).Google Scholar
  5. [5]
    K. Nickel: Zeros of polynomials and other topics. Topics in Interval Analysis (E. Hansen, ed.), pp. 25–34. Clarendon Press, Oxford 1969.Google Scholar
  6. [6]
    O. Perron: Die Lehre von den Kettenbrüchen. Band II: Analytischfunktionentheoretische Kettenbrüche. 3. Aufl., Teubner, Stuttgart 1957.Google Scholar
  7. [7]
    J. Rokne and P. Lancaster: Complex interval arithmetic. Comm. Assoc. Comp. Mach. 14, 111–112 (1971).Google Scholar
  8. [8]
    W. J. Thron: A survey of recent convergence results for continued fractions. Rocky Mountain J. MAth. 4, 273–282 (1974).Google Scholar
  9. [9]
    H. S. Wall: Analytic Theory of Continued Fractions. Van Nostrand, New York 1948.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Peter Henrici
    • 1
  1. 1.Seminar für Angewandte Mathematik Eidgenössische Technische HochschuleZürich

Personalised recommendations