On approximate iterations and solutions for equations considered in function spaces

  • M. Kwapisz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 29)


Banach Space Integral Inequality Volterra Integral Equation Semicontinuous Function Maximal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Collatz, L., Funktional analysis und Numerische Mathematik. Berlin-Gottingen-Heidelberg: Springer 1964.Google Scholar
  2. [2]
    Kwapisz, M., On the approximate solutions of an abstract equation. Annales Polonici Mathematici, XIX, 47–60 / 1967 /Google Scholar
  3. [3]
    Kwapisz, M., On the convergence of approximate iterations for an abstract equation, Annales Polonici Mathematici, XXII, 73–87 /1969 /.Google Scholar
  4. [4]
    Kwapisz, M., Turo, J., On the existence and convergence of successive approximations for some functional equations in a Banach space. Journal of Differential Equations, 16, 298–318 /1974 /.CrossRefGoogle Scholar
  5. [5]
    Kwapisz, M., Turo, J., Existence, uniqueness and successive approximations for a class of integral-functional equations. Aequationes Mathematicae, to appear.Google Scholar
  6. [6]
    Kwapisz, M., Turo, J., Some integral-functional equations. Funkcialaj Ekvacioj, to appear.Google Scholar
  7. [7]
    Ortega, J.M., Rheinboldt, W.C., On a class of approximate iterative processes. Arch. Rat. Mech. Anal., 23, 352–365 / 1967 /.Google Scholar
  8. [8]
    Ortega, J.M., Rheinboldt, W.C., Iterative solutions of nonlinear equations in several variables. Academic Press, 1970.Google Scholar
  9. [9]
    Schröder, J., Das Iterationsverfahren bei allgemeinerem Abstandsbegriff. Math. Zeitschr., 66, 111–116 / 1956 /.CrossRefGoogle Scholar
  10. [10]
    Walter, W., Über sukzessive Approximation bei Volterra-Integralgleichungen in mehreren Veränderlichen, Ann. Acad. Sci. Fennicae, Ser. A, I, 345, 1–32 /1965 /Google Scholar
  11. [11]
    Walter, W., Differential and integral inequalities. Springer 1970.Google Scholar
  12. [12]
    Ważewski, T., Sur une procédé de prouver la convergence des approximations successive sans utilisation des séries de comparaison. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. et Phys., 8, 47–52 / 1960 /.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • M. Kwapisz
    • 1
  1. 1.Institut of MathematicsUniversity of GdańskGdańskPoland

Personalised recommendations