Advertisement

Numerical analysis of artificial enzyme membrane — Hysteresis, oscillations and spontaneous structuration

  • J. P. Kernevez
  • D. Thomas
Mathematical Programming And Numerical Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 27)

Abstract

It is interesting at both physical and biological points of view to study instabilities and possibilities of multiple solutions in systems ruled by partial differential equations. In this way, artificial enzyme membranes or at least artificial immobilization of the enzymes could be a mean to study this kind of phenomena, because enzyme kinetics are frequently non-linear or autocatalytic and the systems are ruled by diffusion-reaction coupling, that is to say by partial differential equations.

Moreover it is easily possible to change the boundary conditions, so critical for these kinds of systems.

For artificial enzyme membranes, due to the well-defined context it is possible to write in a simple way equations ruling the systems and to compare calculated and experimental results. This work is also of stage between the classical enzymology in solution and the study of properties of enzymes in very complex distributed biological systems.

Keywords

Hysteresis Phenomenon Oscillation Phenomenon Monotone Method Diffusion Constraint High Molecular Weight Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. (1).
    Lecture Notes in Mathematics no 332, Non Linear Problems in the Physical Sciences and Biology, Springer Verlag 1973.Google Scholar
  2. (2).
    PRIGOGINE, I (1969). "Structure, Dissipation and Life". In Theoretical Physics and Biology: proceedings, et M. Marois (Amsterdam-North-Holland Co.) p.p. 23–52.Google Scholar
  3. (3).
    THOMAS, D. and CAPLAN, S.R., in "Membrane Separation Processes", Ed. Meares P. Elsevier Publishing Co. Amsterdam (1974).Google Scholar
  4. (4).
    NAPARSTEK, A., ROMETTE, J.L., KERNEVEZ, J.P. and THOMAS, D. Nature (1974), 249, 490PubMedGoogle Scholar
  5. (5).
    NAPARSTEK, A., THOMAS, D. and CAPLAN, S.R., Biophys. Biochem. acta. (1973), 323, 643.Google Scholar
  6. (6).
    CAPLAN, S.R., NAPARSTEK, A. and ZABUSKY, N., (1973), Nature, 245, 364.Google Scholar
  7. (7).
    THOMAS, D., GOLDBETER, A. and LEFEVER, R., in pressGoogle Scholar
  8. (8).
    CHANGEUX, J.P., and THIERY, J., in: "Regulatory Function of Biological Membranes" Vol. 11, Ed. Jänefelt, J., Elsevier Publishing Co. (1968).Google Scholar
  9. (9).
    KATCHALSKY, A. and OPLATKA, A. (1966), Neurosciences Res. Symp. 1 352 (1966)Google Scholar
  10. (10).
    KATCHALSKY, A. and SPANGLER, R., Quartely Revs. Biophys., 1, 127 (1968).Google Scholar
  11. (11).
    DENBIGH, K.G. and TURNER, J.C.R. in "Chemical Reactor Theory", University Press Cambridge (1971).Google Scholar
  12. (12).
    HESS, B. (1962) in "Funktionelle und morphologische Organisation der Zelle". Springer Verlag, Berlin.Google Scholar
  13. (13).
    BETZ, A. and CHANCE, B. (1965). Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Archs. Biochem. Biophys., 109, 585.Google Scholar
  14. (14).
    SEL'KOV, E.E. (1968), Self-oscillations in glycolysis. Euro. J. Biochem. 4, 79.Google Scholar
  15. (15).
    HIGGINS, J. (1964), A chemical mechanism for oscillation of glycolysis intermediates in yeast cells. Proc. Nat. Acad. Sci. U.S.A. 51, 989.Google Scholar
  16. (16).
    GOLDBETER, A. and LEFEVER, R. (1972). Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 302.Google Scholar
  17. (17).
    PRIGOGINE, I. and NICOLIS, G. (1971). Biological order, structure and instabilities. Quarterly Reviews of Biophysics, 4, 107.PubMedGoogle Scholar
  18. (18).
    ZHABOTINSKI, A.M. (1964), Biofizika, 2, 306.Google Scholar
  19. (19).
    SATTINGER, D.H. Monotone Methods in Non-linear Elliptic and Parabolic Boundary Value Problems. Indiana Univ. Math. Journal, 21, 979–1000 (1972).CrossRefGoogle Scholar
  20. (20).
    LIONS, J.L. Quelques Méthodes de Résolution des Problèmes aux limites non linéaires, Dunod, Gauthier Villars, Paris, 1969. (English translation by Le Van, Holt, Rinehart and Winston, New-York (1971)).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. P. Kernevez
    • 1
  • D. Thomas
    • 2
  1. 1.Département de Mathématiques AppliquéesUniversité de Technologie de CompiègneCOMPIEGNEFRANCE
  2. 2.E.R.A. no 338 du C.N.R.S. Département de Génie BiologiqueUniversité de Technologie de CompiègneCOMPIEGNEFRANCE

Personalised recommendations