A numerical method for solving linear control problems with mixed restrictions on control and phase coordinates

  • V. I. Charny
Mathematical Programming And Numerical Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 27)


  1. 1.
    N.N.Krasovskii. The control theory of motion (Russian). Izd. "Nauka", 1968.Google Scholar
  2. 2.
    M.V.Meerov, B.L.Litvak. Optimization of multi-connected control systems (Russian). Izd. "Nauka", 1972.Google Scholar
  3. 3.
    N.V.Gabashvili, N.N.Lominadzé, L.L.Chkhaidzé. An approximate solution of certain optimal control and discrete programming problems (Russian). Tekhnicheskaya Kibernetika, N6, 1972.Google Scholar
  4. 4.
    V.I.Charny, V.A.Boikov. Numerical solution of linear dynamic problems in economic planning (Russian). Preprint, Izd.IAT, 1973.Google Scholar
  5. 5.
    G. Hadley. Nonlinear and Dynamic Programming. Addison-Wesley Pub. Co. Inc., Reading, Massachusetts, 1964.Google Scholar
  6. 6.
    A.V.Fiacco, G.P.Mc Cormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York-London, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • V. I. Charny
    • 1
  1. 1.Institute of Control SciencesMoscowUSSR

Personalised recommendations